# 2.5063 - RIES (RILYBOT Inverse Equation Solver)

RIES command: ./ries --wide -l1 -s 2.5063 Your target value: T = 2.50629999999999997 www.mrob.com/ries

 equation root of equation distance from your target accurate to within complexity x = 5/2 x = 2.5 = T - 0.0063 1 part in 398 50 x = e^3/8 x = 2.51069211539845849 = T + 0.00439212 1 part in 571 67 x = sqrt(2 pi) x = 2.50662827463100069 = T + 0.000328275 1 part in 7635 55 x = xⁿ√(1+9) x = 2.50618414558876923 = T - 0.000115854 1 part in 21633 70 x = sqrt(9-e) x = 2.50633560632668573 = T + 3.56063e-05 1 part in 70389 64 x = (sqrt(pi)+e)/ln(6) x = 2.50632730368619638 = T + 2.73037e-05 1 part in 91793 94 x = 4(4ⁿ√7-1) x = 2.506306246791143 = T + 6.24679e-06 1 part in 401214 91 sinpi(ln(x)) = sqrt(1/(5 pi)) x = 2.50630275664666691 = T + 2.75665e-06 1 part in 909184 92 x = (e^-(phi/3)+1)^2 x = 2.50630146469867565 = T + 1.4647e-06 1 part in 1711137 96 cospi(1/(x+2)) = sqrt(sinpi(1/5)) x = 2.5063009155283229 = T + 9.15528e-07 1 part in 2737545 98 tanpi(1/x) = (5^2)ⁿ√3+2 x = 2.50629971692241771 = T - 2.83078e-07 1 part in 8853757 103 x = phi^(2-5ⁿ√2)+1 x = 2.50630015897715008 = T + 1.58977e-07 1 part in 15765159 108 cospi(sinpi(x-pi)) = -sqrt(cospi(1/8)) x = 2.50629984255651905 = T - 1.57443e-07 1 part in 15918728 115 x = sqrt(phi/7)-1/(x-3) x = 2.50630006178713227 = T + 6.17871e-08 1 part in 40563462 112 x = 3/xⁿ√(2-(log_5(2))) x = 2.50629998619551886 = T - 1.38045e-08 1 part in 1.816e+08 121 x = 5^(e-2)-1/e^(1/x) x = 2.50629999774022538 = T - 2.25977e-09 1 part in 1.109e+09 119

Legend and Statistics: log_A(B) = logarithm to base A of B = ln(B) / ln(A) cospi(X) = cos(pi * x) e = base of natural logarithms, 2.71828... sinpi(X) = sin(pi * x) ln(x) = natural logarithm or log base e tanpi(X) = tan(pi * x) phi = the golden ratio, (1+sqrt(5))/2 sqrt(x) = square root Aⁿ√B = Ath root of B pi = 3.14159... --LHS-- --RHS-- -Total- max complexity: 62 57 119 dead-ends: 737251 1485888 2223139 Time: 0.123 expressions: 50898 97214 148112 distinct: 28783 31574 60357 Memory: 3328KiB Total equations tested: 908794442 (9.088e+08)

For a more thorough search and many runtime options,

get the RIES source code and compile your own!

More serious mathematical users might prefer