0.839213771445165 - RIES (RILYBOT Inverse Equation Solver)
RIES command: ./ries --wide -l1 -s 0.839213771445165
Your target value: T = 0.839213771445165 mrob.com/ries
|
equation | root of equation | distance from your target
| accurate to within | complexity
|
sinpi(x) = 1/2 |
x = 0.833333333333333 |
= T - 0.00588044 |
1 part in 143 |
48
|
x = sqrt(1/sqrt(2)) |
x = 0.840896415253714 |
= T + 0.00168264 |
1 part in 499 |
53
|
x = eⁿ√(1/phi) |
x = 0.837756379554796 |
= T - 0.00145739 |
1 part in 576 |
63
|
sinpi(x) = ln(2)^2 |
x = 0.840472259748535 |
= T + 0.00125849 |
1 part in 667 |
63
|
sinpi(x) = ln(phi) |
x = 0.840196787970259 |
= T + 0.000983017 |
1 part in 854 |
59
|
x = piⁿ√(1/sqrt(3)) |
x = 0.839583304512305 |
= T + 0.000369533 |
1 part in 2271 |
67
|
cospi(sinpi(x)) = 1/e^3 |
x = 0.839130455090593 |
= T - 8.33164e-05 |
1 part in 10073 |
76
|
x = 1/(atan2(1,e)+x) |
x = 0.839157701128935 |
= T - 5.60703e-05 |
1 part in 14967 |
76
|
tanpi(sinpi(x)) = 3^e |
x = 0.839202416767333 |
= T - 1.13547e-05 |
1 part in 73909 |
81
|
tanpi(sinpi(x)) = 2 pi^2 |
x = 0.839224203755327 |
= T + 1.04323e-05 |
1 part in 80444 |
84
|
cospi(sinpi(x)) = 1/3^e |
x = 0.839209855271806 |
= T - 3.91617e-06 |
1 part in 214294 |
85
|
sinpi(x) = 3ⁿ√(1/2^pi) |
x = 0.839217205809536 |
= T + 3.43436e-06 |
1 part in 244358 |
90
|
atan2(x,sqrt(phi)) = ln(ln(6)) |
x = 0.839213570800956 |
= T - 2.00644e-07 |
1 part in 4182597 |
95
|
x = 1/2^(1/e^(e^(1/pi))) |
x = 0.839213850997679 |
= T + 7.95525e-08 |
1 part in 10549180 |
95
|
cospi((atan2(x))^2) = 1/(e^phi)^2 |
x = 0.839213784959812 |
= T + 1.35146e-08 |
1 part in 62096609 |
103
|
x = sqrt(atan2(6,e^2))^sqrt(x) |
x = 0.839213780665078 |
= T + 9.21991e-09 |
1 part in 91021875 |
106
|
x = (sqrt(6-1/pi)-1)/sqrt(e) |
x = 0.839213779661081 |
= T + 8.21592e-09 |
1 part in 1.021e+08 |
113
|
x = (log_2(3))ⁿ√(1/sqrt(3)ⁿ√phi) |
x = 0.839213772382888 |
= T + 9.37723e-10 |
1 part in 8.949e+08 |
115
| |
Legend and Statistics:
atan2(y,x) = Angle of ray from origin through point (y,x) pi = 3.14159...
log_A(B) = logarithm to base A of B = ln(B) / ln(A) cospi(X) = cos(pi * x)
e = base of natural logarithms, 2.71828... sinpi(X) = sin(pi * x)
ln(x) = natural logarithm or log base e tanpi(X) = tan(pi * x)
phi = the golden ratio, (1+sqrt(5))/2 sqrt(x) = square root
Aⁿ√B = Ath root of B
--LHS-- --RHS-- -Total-
max complexity: 62 56 118
dead-ends: 858942 1210614 2069556 Time: 0.087
expressions: 59425 75029 134454
distinct: 36902 29158 66060 Memory: 4672KiB
Total equations tested: 1075988516 (1.076e+09)
For a more thorough search and many runtime options,
get the RIES source code and compile your own!
mrob.com/ries
More serious mathematical users might prefer
the Inverse Symbolic Calculator
For legal, recreational use only. Read the RIES Terms of Use
Black-hats and raptors abound. Read the RIES Privacy Policy
This page was written in the "embarrassingly readable" markup language RHTF, and was last updated on 2013 Feb 09. s.27