Extending Pascal and Narayana by Product of Fractions Method
The well-known Pascal's triangle and Narayana triangle can be generated by a variety of methods. This page shows a well-known construction that can be used for Pascal's triangle, and easily adapted to Narayana by first noting that the binomial coefficients C(1,k) for the natural numbers 0, 1, 2, 3, ...; and then treating C(1,k) as a diagonal of the triangle being constructed, i.e. T(1,k). After constructing Pascal and Narayana triangles this way, it is clear that the method extends to higher "levels" of triangles.
The Axioms
These are the rules for constructing a triangle of "level" L, where L=1 gives Pascal's triangle and L=2 gives the Narayana triangle:
- All elements T(k,0) and T(k,k) are equal to 1, for k>=0.
- The elements T(k,1) for k>=1 are equal to the binomial coefficients C(L-1+k,L).
- All other elements T(r,k) for r>=2, k>=2 and k<r are equal to T(r,k-1)×T(r+1-k,1)/T(k,1).
Using just these rules there a single wyay to build a triangle for any natural number L.
Illustration
To illustrate the construction, here we create the Narayana triangle which is level L=2.
Set all T(k,0) and T(k,k) to 1: 1 1 1 1 1 1 1 1 1 1 1
Set the elements T(k,1) for k>=1 equal to binomial coefficients C(1+k,2): 1 1 1 1 3 1 1 6 1 1 10 1 1 15 1
Complete the T(3,k) row by filling in the value of T(3,2) using T(r,k) = T(r,k-1)×T(r+1-k,1)/T(k,1).
T(3,2) = T(3,1)×T(2,1)/T(2,1) = 6×3/3 = 6. 1 1 1 1 3 1 1 6 6 1 1 10 1 1 15 1
Complete the T(4,k) row by filling in the values of T(4,2) and T(4,3) using T(r,k) = T(r,k-1)×T(r+1-k,1)/T(k,1).
T(4,2) = T(4,1)×T(3,1)/T(2,1) = 10×6/3 = 20.
T(4,3) = T(4,2)×T(2,1)/T(3,1) = 20×3/6 = 10. 1 1 1 1 3 1 1 6 6 1 1 10 20 10 1 1 15 1
The construction continues in the same manner.
The 1st triangle in the series is Pascal's triangle.
Pascal's triangle (L=1)
1 | 1 | |||||||||||||||||||||||||||||
1 | 1 | 2 | ||||||||||||||||||||||||||||
1 | 2 | 1 | 4 | |||||||||||||||||||||||||||
1 | 3 | 3 | 1 | 8 | ||||||||||||||||||||||||||
1 | 4 | 6 | 4 | 1 | 16 | |||||||||||||||||||||||||
1 | 5 | 10 | 10 | 5 | 1 | 32 | ||||||||||||||||||||||||
1 | 6 | 15 | 20 | 15 | 6 | 1 | 64 | |||||||||||||||||||||||
1 | 7 | 21 | 35 | 35 | 21 | 7 | 1 | 128 | ||||||||||||||||||||||
1 | 8 | 28 | 56 | 70 | 56 | 28 | 8 | 1 | 256 | |||||||||||||||||||||
1 | 9 | 36 | 84 | 126 | 126 | 84 | 36 | 9 | 1 | 512 | ||||||||||||||||||||
1 | 10 | 45 | 120 | 210 | 252 | 210 | 120 | 45 | 10 | 1 | 1024 | |||||||||||||||||||
1 | 11 | 55 | 165 | 330 | 462 | 462 | 330 | 165 | 55 | 11 | 1 | 2048 | ||||||||||||||||||
1 | 12 | 66 | 220 | 495 | 792 | 924 | 792 | 495 | 220 | 66 | 12 | 1 | 4096 | |||||||||||||||||
1 | 13 | 78 | 286 | 715 | 1287 | 1716 | 1716 | 1287 | 715 | 286 | 78 | 13 | 1 | 8192 | ||||||||||||||||
1 | 14 | 91 | 364 | 1001 | 2002 | 3003 | 3432 | 3003 | 2002 | 1001 | 364 | 91 | 14 | 1 | 16384 |
Diagonals:
T(n+0,0) = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A0012
T(n+1,1) = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ... A0027
T(n+2,2) = 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, ... A0217
T(n+3,3) = 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, ... A0292
T(n+4,4) = 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, ... A0332
T(n+5,5) = 1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, 3003, 4368, 6188, 8568, 11628, 15504, 20349, 26334, 33649, 42504, ... A0389
T(n+6,6) = 1, 7, 28, 84, 210, 462, 924, 1716, 3003, 5005, 8008, 12376, 18564, 27132, 38760, 54264, 74613, 100947, 134596, 177100, ... A0579
T(n+7,7) = 1, 8, 36, 120, 330, 792, 1716, 3432, 6435, 11440, 19448, 31824, 50388, 77520, 116280, 170544, 245157, 346104, 480700, 657800, ... A0580
T(n+8,8) = 1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310, 43758, 75582, 125970, 203490, 319770, 490314, 735471, 1081575, 1562275, 2220075, ... A0581
T(n+9,9) = 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 92378, 167960, 293930, 497420, 817190, 1307504, 2042975, 3124550, 4686825, 6906900, ... A0582
Row sums: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, ... A0079 (the powers of 2)
Triangle 2, based on seed terms:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, ...
|
Diagonals:
T(n+0,0) = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A0012
T(n+1,1) = 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, ... A0217
T(n+2,2) = 1, 6, 20, 50, 105, 196, 336, 540, 825, 1210, 1716, 2366, 3185, 4200, 5440, 6936, 8721, 10830, 13300, 16170, ... A2415
T(n+3,3) = 1, 10, 50, 175, 490, 1176, 2520, 4950, 9075, 15730, 26026, 41405, 63700, 95200, 138720, 197676, 276165, 379050, 512050, 681835, ... A6542
T(n+4,4) = 1, 15, 105, 490, 1764, 5292, 13860, 32670, 70785, 143143, 273273, 496860, 866320, 1456560, 2372112, 3755844, 5799465, 8756055, 12954865, 18818646, ... A6857
T(n+5,5) = 1, 21, 196, 1176, 5292, 19404, 60984, 169884, 429429, 1002001, 2186184, 4504864, 8836464, 16604784, 30046752, 52581816, 89311761, 147685461, 238369516, 376372920, ... A108679
T(n+6,6) = 1, 28, 336, 2520, 13860, 60984, 226512, 736164, 2147145, 5725720, 14158144, 32821152, 71954064, 150233760, 300467520, 578399976, 1075994073, 1941008916, 3405278800, 5824819000, ... A134288
T(n+7,7) = 1, 36, 540, 4950, 32670, 169884, 736164, 2760615, 9202050, 27810640, 77364144, 200443464, 488259720, 1126753200, 2478857040, 5226256926, 10606227291, 20796524100, 39525557500, 73018266750, ... A134289
T(n+8,8) = 1, 45, 825, 9075, 70785, 429429, 2147145, 9202050, 34763300, 118195220, 367479684, 1057896060, 2848181700, 7229999700, 17420856420, 40067969766, 88385227425, 187746398125, 385374185625, 766691800875, ... A134290
T(n+9,9) = 1, 55, 1210, 15730, 143143, 1002001, 5725720, 27810640, 118195220, 449141836, 1551580888, 4936848280, 14620666060, 40648664980, 106847919376, 267119798440, 638337753625, 1464421905375, 3237143159250, 6917263803450, ... A134291
Row sums: 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, ... A0108
Triangle 3, based on seed terms:
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, ...
|
Diagonals:
T(n+0,0) = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A0012
T(n+1,1) = 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, ... A0292
T(n+2,2) = 1, 10, 50, 175, 490, 1176, 2520, 4950, 9075, 15730, 26026, 41405, 63700, 95200, 138720, 197676, 276165, 379050, 512050, 681835, ... A6542
T(n+3,3) = 1, 20, 175, 980, 4116, 14112, 41580, 108900, 259545, 572572, 1184183, 2318680, 4331600, 7768320, 13441968, 22535064, 36729945, 58373700, 90684055, 138003404, ... A47819
T(n+4,4) = 1, 35, 490, 4116, 24696, 116424, 457380, 1557270, 4723719, 13026013, 33157124, 78835120, 176729280, 376375104, 766192176, 1498581756, 2828205765, 5168991135, 9177226366, 15870391460, ... A107915
T(n+5,5) = 1, 56, 1176, 14112, 116424, 731808, 3737448, 16195608, 61408347, 208416208, 644195552, 1837984512, 4892876352, 12259074816, 29115302688, 65937597264, 143107211709, 298915373064, 603074875480, 1178943365600, ... A140901
T(n+6,6) = 1, 84, 2520, 41580, 457380, 3737448, 24293412, 131589315, 614083470, 2530768240, 9386849472, 31803696288, 99604982880, 291153026880, 800670823920, 2085276513474, 5172303508911, 12276881393700, 27999904933000, 61578738292500, ... A140903
T(n+7,7) = 1, 120, 4950, 108900, 1557270, 16195608, 131589315, 877262100, 4971151900, 24584605760, 108284013552, 431621592480, 1577078895600, 5337805492800, 16880809870980, 50245234086564, 141622596077325, 379998709805000, 974996689631250, 2401570793407500, ... A140907
T(n+8,8) = 1, 165, 9075, 259545, 4723719, 61408347, 614083470, 4971151900, 33803832920, 198520691512, 1028698128744, 4783805983320, 20239179160200, 78777112731240, 284722993157196, 963033653325810, 3068489581675375, 9262468551496875, ... A140912
T(n+9,9) = 1, 220, 15730, 572572, 13026013, 208416208, 2530768240, 24584605760, 198520691512, 1371597504992, 8291930371088, 44648855844320, 217233856319480, 966332582836544, 3968865965221520, ... A140918
Row sums: 1, 2, 6, 22, 92, 422, 2074, 10754, 58202, 326240, 1882960, 11140560, 67329992, 414499438, 2593341586, ... A1181 Baxter permutations of length n
Triangle 4, based on seed terms:
1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, ...
|
Diagonals:
T(n+0,0) = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A0012
T(n+1,1) = 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, ... A0332
T(n+2,2) = 1, 15, 105, 490, 1764, 5292, 13860, 32670, 70785, 143143, 273273, 496860, 866320, 1456560, 2372112, 3755844, 5799465, 8756055, 12954865, 18818646, ... A6857
T(n+3,3) = 1, 35, 490, 4116, 24696, 116424, 457380, 1557270, 4723719, 13026013, 33157124, 78835120, 176729280, 376375104, 766192176, 1498581756, 2828205765, 5168991135, 9177226366, 15870391460, ... A107915
T(n+4,4) = 1, 70, 1764, 24696, 232848, 1646568, 9343620, 44537922, 184225041, 677352676, 2254684432, 6892441920, 19571505408, 52101067968, 131018862096, 313203587004, 715536058545, 1569305708586, 3316911815140, 6778924352200, ... A47835
T(n+5,5) = 1, 126, 5292, 116424, 1646568, 16818516, 133613766, 868489479, 4789851066, 23029990984, 98561919456, 381644355456, 1354627767168, 4454641311264, 13691471089032, 39620253756006, 108618373687131, 283595960194470, 708397594804900, 1699573176873000, ... A140902
T(n+6,6) = 1, 210, 13860, 457380, 9343620, 133613766, 1447482465, 12544848030, 90474964580, 559299781040, 3031952379456, 14675134144320, 64344818940480, 258616676126160, 962206162645860, 3341308066756506, ... A140904
T(n+7,7) = 1, 330, 32670, 1557270, 44537922, 868489479, 12544848030, 142174944340, 1318349483880, 10323075958624, 69951472754592, 418241323113120, 2241344526426720, ... A140908
T(n+8,8) = 1, 495, 70785, 4723719, 184225041, 4789851066, 90474964580, 1318349483880, 15484613937936, 151561524301616, 1268665346776464, 9271015995674160, ... A140913
T(n+9,9) = 1, 715, 143143, 13026013, 677352676, 23029990984, 559299781040, 10323075958624, 151561524301616, 1832516612010448, ... A140919
Row sums: 1, 2, 7, 32, 177, 1122, 7898, 60398, 494078, 4274228, 38763298, 366039104, 3579512809, 36091415154, 373853631974, ... A5362
Triangle 5, based on seed terms:
1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, 3003, 4368, 6188, 8568, 11628, 15504, 20349, 26334, 33649, 42504, ...
|
Diagonals:
T(n+0,0) = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A0012
T(n+1,1) = 1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, 3003, 4368, 6188, 8568, 11628, 15504, 20349, 26334, 33649, 42504, ... A0389
T(n+2,2) = 1, 21, 196, 1176, 5292, 19404, 60984, 169884, 429429, 1002001, 2186184, 4504864, 8836464, 16604784, 30046752, 52581816, 89311761, 147685461, 238369516, 376372920, ...
T(n+3,3) = 1, 56, 1176, 14112, 116424, 731808, 3737448, 16195608, 61408347, 208416208, 644195552, 1837984512, 4892876352, 12259074816, 29115302688, 65937597264, 143107211709, 298915373064, 603074875480, 1178943365600, ...
T(n+4,4) = 1, 126, 5292, 116424, 1646568, 16818516, 133613766, 868489479, 4789851066, 23029990984, 98561919456, 381644355456, 1354627767168, 4454641311264, 13691471089032, 39620253756006, 108618373687131, 283595960194470, 708397594804900, 1699573176873000, ...
T(n+5,5) = 1, 252, 19404, 731808, 16818516, 267227532, 3184461423, 30107635272, 235234907908, 1566039386912, 9095857138368, 46960429261824, 218772384397632, 931020034054176, 3656383418054268, ...
T(n+6,6) = 1, 462, 60984, 3737448, 133613766, 3184461423, 55197331332, 739309710568, 7997986868872, 72261531710368, 559611782036736, 3792054662892288, ...
T(n+7,7) = 1, 792, 169884, 16195608, 868489479, 30107635272, 739309710568, 13710834632352, 201299981193168, 2424984388825856, ...
T(n+8,8) = 1, 1287, 429429, 61408347, 4789851066, 235234907908, 7997986868872, 201299981193168, 3940599631842016, ...
T(n+9,9) = 1, 2002, 1002001, 208416208, 23029990984, 1566039386912, 72261531710368, 2424984388825856, ...
Row sums: 1, 2, 8, 44, 310, 2606, 25202, 272582, 3233738, 41454272, 567709144, 8230728508, 125413517530, 1996446632130, 33039704641922, ... A5363
This page was written in the "embarrassingly readable" markup language RHTF, and was last updated on 2022 Sep 17. s.30