Profile duz Photos Blog Lists

📸 Tools 🚽 🛛 Help

< Previous Next >

September 23 Random walking In http://tieba.baidu.com/f?kz=42429501 it is asked that:

If A and B are started from same point of an axis. Each time, they throw a coin. If it is head, A will move forward by 1; otherwise, B will move forward by π . They'll not stop until the coordinate of A is larger than that of B. What is the probability that the game will stop?

In <u>http://bbs.emath.ac.cn/thread-331-1-1.html</u>, the problem is analyzed and finally I got the result that the probability is between 0.54364331210052407755147385529445 and 0.54364331210052407755147385529454.

If B moving forward by another number x instead of π , and the probability that the game will stop is p(x), it is easy to know that p(x) is monotone decreasing function. If we find two rational numbers a and b which satisfy $a > \pi > b$, we have $p(a) < p(\pi) < p(b)$. This means as soon as we could solve the problem for all rational number x, we could find the approximate value of $p(\pi)$.

For any rational number x, we could transform the problem into a version that A moving forward by integer m and B moving forward by integer n (where n is larger than m). In 5#, this problem is analyzed. Let's assume that the probability is q(k), $(k \ge 1)$ given A is after B by k. We have linear recurrence equation

 $q(k) = \frac{1}{2}q(k-m) + \frac{1}{2}q(k+n), (k \ge 1)$ and the correspondent characteristic polynomial is $x^{m+n} - 2x^m + 1 = 0$. In <u>http://bbs.emath.ac.cn/thread-332-1-3.html</u>, <u>Rouché's Theorem</u> is used to show that there're exact m roots of the polynomial whose norms are less than 1(And n-1 roots whose norm is larger than 1). Let's assume the m roots whose norms are less than 1 are x_1, x_2, \dots, x_m while other roots are x_{m+1}, \dots, x_{m+n} . q(n) could be written as $q(k) = a_1 x_1^k + a_2 x_2^k + \dots + a_{m+n} x_{m+n}^k$. Since $0 \le q(k) \le 1$, and it is easy to prove that q(k) goes to 0 as k goes to infinity. According to analysis in

<u>http://bbs.emath.ac.cn/thread-354-1-1.html</u>, the cofficients $a_{m+1}a_{m+2}\cdots a_{m+n}a_{m+n}$ should be 0 and so that we have $q(k) = a_1x_1^k + a_2x_2^k + \cdots + a_mx_m^k$

Further analysis on 18# shows

$$q(n) = 1 + \prod_{k=1}^{n} (1 - y_k)_{\text{where }} y_i = \frac{1}{x_i}_{\text{and } p(x) \text{ is } \frac{1}{2} + \frac{q(n)}{2}}$$

11# shows p(π) is between 0.54364331210052407755147385529445 and 0.54364331210052407755147385529454.

m

In 23# zgg draws the picture of p(x) with the algorithm above.

10:50 AM | Blog it | Mathematics

Comments

To add a comment, sign in with your Windows Live ID.

Trackbacks

The trackback URL for this entry is: http://zdu.spaces.live.com/blog/cns!C95152CB25EF2037!127.trak

Weblogs that reference this entryNone

© 2010 Microsoft Terms Privacy About our ads Advertise

Code of Conduct Safety Help Center Feedback Report abuse English