Profile duz Photos Blog Lists
< Previous Next >
September 23

Random walking

In http://tieba.baidu.com/f?kz=42429501 it is asked that:
If A and B are started from same point of an axis. Each time, they throw a coin. If it is head, A will move forward by 1 ; otherwise, B will move forward by π. They'll not stop until the coordinate of A is larger than that of B. What is the probability that the game will stop?

In http://bbs.emath.ac.cn/thread-331-1-1.html, the problem is analyzed and finally I got the result that the probability is between 0.54364331210052407755147385529445 and 0.54364331210052407755147385529454 .

If B moving forward by another number x instead of π, and the probability that the game will stop is $p(x)$, it is easy to know that $p(x)$ is monotone decreasing function. If we find two rational numbers a and b which satisfy $a>\pi>b$, we have $p(a)<p(\pi)<p(b)$. This means as soon as we could solve the problem for all rational number x, we could find the approximate value of $p(\pi)$.

For any rational number x, we could transform the problem into a version that A moving forward by integer m and B moving forward by integer n (where n is larger than $\mathrm{m})$. In $\underline{5 \#}$,this problem is analyzed. Let's assume that the probability is $q(k),(k \geq 1)$ given A is after B by k . We have linear recurrence equation
$q(k)=\frac{1}{2} q(k-m)+\frac{1}{2} q(k+n),(k \geq 1)$ and the correspondent characteristic polynomial is $x^{m+n}-2 x^{m}+1=0$. In http://bbs.emath.ac.cn/thread-332-1-3.html, Rouché's Theorem is used to show that there're exact m roots of the polynomial whose norms are less than 1(And $n-1$ roots whose norm is larger than 1). Let's assume the m roots whose norms are less than 1 are $x_{1}, x_{2}, \ldots, x_{m}$ while other roots are x_{m+1}, \ldots, x_{m+n}. $\mathrm{q}(\mathrm{n})$ could be written as $q(k)=a_{1} x_{1}^{k}+a_{2} x_{2}^{k}+\ldots+a_{m+n^{x}}^{x} m+n$. Since $0 \leq q(k) \leq 1$, and it is easy to prove that $q(k)$ goes to 0 as k goes to infinity. According to analysis in http://bbs.emath.ac.cn/thread-354-1-1.html, the cofficients $a_{m+1}, a_{m+2}, \ldots, a_{m+n}$ should be 0 and so that we have $q(k)=a_{1} x_{1}^{k}+a_{2} x_{2}^{k}+\ldots+a_{m} x_{m}^{k}$.

Further analysis on 18\# shows $q(n)=1+\prod_{k=1}^{m}\left(1-y_{k}\right)$ where $y_{i}=\frac{1}{x_{i}}$ and $p(x)$ is $\frac{1}{2}+\frac{q(n)}{2}$.
11\# shows $p(\pi)$ is between 0.54364331210052407755147385529445 and 0.54364331210052407755147385529454 .
In $\underline{23 \#}$ zgg draws the picture of $p(x)$ with the algorithm above.

10:50 AM | Blog it | Mathematics

Comments

To add a comment, sign in with your Windows Live ID.

Trackbacks

The trackback URL for this entry is: http://zdu.spaces.live.com/blog/cns!C95152CB25EF2037!127.trak
Weblogs that reference this entry

- None

