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Beyond Bird’s Nested Arrays IV 
 

How about extending even beyond my Nested Hyper-Nested Array Notation, which has a limit ordinal 

of θ(εΩ+1), the Bachmann-Howard ordinal? Let me introduce to you an all-new 1-hyperseparator 

symbol – the black circle (●). Since the new symbol is a 1-hyperseparator (like the backslash), it 

requires a minimum of one pair of square brackets around it, so the smallest separator containing ● is 

the [1 ● 2] separator. 

 

The θ(εΩ+1) level separator 

 {a, b [1 ● 2] 2} = {a ‹0 ● 2› b} 

                        = {a ‹b ‹b ‹ ... ‹b ‹b \b b› b› ... › b› b› b} 

       (with b pairs of angle brackets). 

This is equivalent to 

 {a, b  [1 [1 [1 [ ... [1 [1 \b 1, 2] 2] ... ] 2] 2] 2]  2} (with b pairs of square brackets), 

where the separator has level θ(Ω^Ω^Ω^...^Ω^ω) (with 2b-3 Ω’s). 

 

Using the collapsing theta function (in single-argument form when the second argument is zero) for 

expressing ordinals beyond the epsilon numbers, I find that the more significant separators have 

ordinal levels as follows:- 

 [1 ● 2]  has level  θ(εΩ+1), 

 [2 ● 2]  has level  θ(εΩ+1)+1, 

 [1 [1 \ 2] 2 ● 2]  has level  θ(εΩ+1)+ε0, 

 [1 [1 ● 2] 2 ● 2]  has level  θ(εΩ+1)2, 

 [1 [1 [1 ● 2] 2 ● 2] 2 ● 2]  has level  θ(εΩ+1)^θ(εΩ+1), 

 [1 \ 2 ● 2]  has level  ε(θ(εΩ+1)+1) = θ(1, θ(εΩ+1)+1), 

 [1 [1 \2 3] 2 ● 2]  has level  Γ(θ(εΩ+1)+1) = θ(Ω, θ(εΩ+1)+1), 

 [1 [1 \2 1 \2 2] 2 ● 2]  has level  θ(Ω^Ω, θ(εΩ+1)+1), 

 [1 [1 [1 \3 3] 2] 2 ● 2]  has level  θ(Ω^Ω^Ω, θ(εΩ+1)+1), 

 [1 ● 3]  has level  θ(εΩ+1, 1) 

   (limit ordinal of  θ(α, θ(εΩ+1)+1) = θ(α, θ(θ(εΩ+1), 0)+1)  as α → εΩ+1), 

 [1 ● 4]  has level  θ(εΩ+1, 2), 

 [1 ● 1 [1 \ 2] 2]  has level  θ(εΩ+1, ε0), 

 [1 ● 1 [1 ● 2] 2]  has level  θ(εΩ+1, θ(εΩ+1)), 

 [1 ● 1 [1 ● 1 [1 ● 2] 2] 2]  has level  θ(εΩ+1, θ(εΩ+1, θ(εΩ+1))), 

 [1 ● 1 \ 2]  has level  θ(εΩ+1+1), 

 [1 ● 1 [2 \2 2] 2]  has level  θ(εΩ+1+ω), 

 [1 ● 1 [1 \2 3] 2]  has level  θ(εΩ+1+Ω), 

 [1 ● 1 [1 \2 1 \2 2] 2]  has level  θ(εΩ+1+Ω^Ω), 

 [1 ● 1 [1 [1 \3 3] 2] 2]  has level  θ(εΩ+1+Ω^Ω^Ω), 

 [1 ● 1 ● 2]  has level  θ(εΩ+12), 

 [1 ● 1 ● 1 ● 2]  has level  θ(εΩ+13), 

 [1 ● 1 ● 1 ● ... ● 1 ● 2]  (with n ● symbols)  has level  θ(εΩ+1n). 

 

With k ● symbols (k ≥ 1) and # representing the remainder of the array, 

 {a, b [1 ● 1 ● 1 ● ... ● 1 ● c #] 2} = {a ‹ 0 ● 1 ● 1 ● ... ● 1 ● c # › b} 

                                                     = {a ‹ S ● S ● ... ● S ● T ● c-1 # › b}, 

where S = ‘b \ b \ b \ ... \ b’    (with b b’s, explained on page 3), 

 T = ‘b ‹b ‹b ‹ ... ‹b ‹b \b b› b› ... › b› b› b’  (with b-1 pairs of angle brackets). 

 



2 
 

Introducing a new family of n-hyperseparator ●n symbols, with ● = [1 ●2 2] and the corresponding 

n-hyperseparator symbol ●n = [1 ●n+1 2] in a similar manner to \ = [1 \2 2] and \n = [1 \n+1 2] in Beyond 

Bird’s Nested Arrays III, I find that 

 [1 [2 ●2 2] 2]  has level  θ(εΩ+1ω), 

 [1 [1 ● 2 ●2 2] 2]  has level  θ(εΩ+1θ(εΩ+1)), 

 [1 [1 [1 ● 2 ●2 2] 2 ●2 2] 2]  has level  θ(εΩ+1θ(εΩ+1θ(εΩ+1))), 

 [1 [1 \2 2 ●2 2] 2]  has level  θ(εΩ+1Ω), 

 [1 [1 \2 1 \2 2 ●2 2] 2]  has level  θ(εΩ+1(Ω^Ω)), 

 [1 [1 [1 \3 3] 2 ●2 2] 2]  has level  θ(εΩ+1(Ω^Ω^Ω)), 

 [1 [1 ●2 3] 2]  has level  θ(εΩ+1^2), 

 [1 [1 ●2 4] 2]  has level  θ(εΩ+1^3), 

 [1 [1 ●2 1 \ 2] 2]  has level  θ(εΩ+1^ε0), 

 [1 [1 ●2 1 ● 2] 2]  has level  θ(εΩ+1^θ(εΩ+1)), 

 [1 [1 ●2 1 [1 ●2 1 ● 2] 2] 2]  has level  θ(εΩ+1^θ(εΩ+1^θ(εΩ+1))), 

 [1 [1 ●2 1 \2 2] 2]  has level  θ(εΩ+1^Ω), 

 [1 [1 ●2 1 \2 3] 2]  has level  θ(εΩ+1^(Ω2)), 

 [1 [1 ●2 1 \2 1 \2 2] 2]  has level  θ(εΩ+1^Ω^2), 

 [1 [1 ●2 1 [2 \3 2] 2] 2]  has level  θ(εΩ+1^Ω^ω), 

 [1 [1 ●2 1 [1 \3 3] 2] 2]  has level  θ(εΩ+1^Ω^Ω), 

 [1 [1 ●2 1 [1 \3 1 \3 2] 2] 2]  has level  θ(εΩ+1^Ω^Ω^Ω), 

 [1 [1 ●2 1 [1 [1 \4 3] 2] 2] 2]  has level  θ(εΩ+1^Ω^Ω^Ω^Ω), 

 [1 [1 ●2 1 ●2 2] 2]  has level  θ(εΩ+1^εΩ+1), 

 [1 [1 ●2 1 ●2 3] 2]  has level  θ(εΩ+1^(εΩ+12)), 

 [1 [1 ●2 1 ●2 1 ●2 2] 2]  has level  θ(εΩ+1^εΩ+1^2), 

 [1 [1 ●2 1 ●2 1 ●2 1 ●2 2] 2]  has level  θ(εΩ+1^εΩ+1^3), 

 [1 [1 [2 ●3 2] 2] 2]  has level  θ(εΩ+1^εΩ+1^ω), 

 [1 [1 [1 ● 2 ●3 2] 2] 2]  has level  θ(εΩ+1^εΩ+1^θ(εΩ+1)), 

 [1 [1 [1 \3 2 ●3 2] 2] 2]  has level  θ(εΩ+1^εΩ+1^Ω), 

 [1 [1 [1 \3 1 \3 2 ●3 2] 2] 2]  has level  θ(εΩ+1^εΩ+1^Ω^Ω), 

 [1 [1 [1 [1 \4 3] 2 ●3 2] 2] 2]  has level  θ(εΩ+1^εΩ+1^Ω^Ω^Ω), 

 [1 [1 [1 ●3 3] 2] 2]  has level  θ(εΩ+1^εΩ+1^εΩ+1), 

 [1 [1 [1 ●3 1 ●3 2] 2] 2]  has level  θ(εΩ+1^εΩ+1^εΩ+1^εΩ+1), 

 [1 [1 [1 [1 ●4 3] 2] 2] 2]  has level  θ(εΩ+1^εΩ+1^εΩ+1^εΩ+1^εΩ+1), 

 [1 \[3] 2]  has level  θ(εΩ+2) (\n is \[1]n and ●n is \[2]n – when n = 1, \ is \[1] and ● is \[2]), 

 [1 \[4] 2]  has level  θ(εΩ+3) (by letting ●n and εΩ+1 above be \[3]n and εΩ+2 respectively), 

 [1 \[1, 2] 2]  has level  θ(εΩ+ω), 

 [1 \[1, 1, 2] 2]  has level  θ(εΩ+ω^2), 

 [1 \[1 [2] 2] 2]  has level  θ(εΩ+ω^ω), 

 [1 \[1 \ 2] 2]  has level  θ(ε(Ω+ε0)), 

 [1 \[1 [1 \2 3] 2] 2]  has level  θ(ε(Ω+Γ0)), 

 [1 \[1 ● 2] 2]  has level  θ(ε(Ω+θ(εΩ+1))), 

 [1 \[1 \[1 \ 2] 2] 2]  has level  θ(ε(Ω+θ(ε(Ω+ε0)))), 

 [1 \[1 \[1 ● 2] 2] 2]  has level  θ(ε(Ω+θ(ε(Ω+θ(εΩ+1))))), 

 [1 \[1 \[1 \[1 ● 2] 2] 2] 2]  has level  θ(ε(Ω+θ(ε(Ω+θ(ε(Ω+θ(εΩ+1))))))). 

The limit ordinal of the \[] bracket notation (with ω nested levels of \[] brackets) is θ(εΩ2). 

 

In general, when X is an array, the n-hyperseparator \[X]n = [1 \[X]n+1 2]. The subscript is omitted when 

it is 1, since this is the lowest value. Angle Bracket Rules A5a-b (page 24 of Beyond Bird’s Nested 

Arrays III) now apply to all backslash arrays; \ now reads \[B] and \ j now reads \[B]j for any array B. 
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When A1, A2, ... , Ak are 1-hyperseparator arrays (k ≥ 0) that contain the symbols \[H1]n(1), \[H2]n(2), ... , 

\[Hk]n(k) respectively, where each Hi is the highest array within \[] brackets contained within Ai and 

placed within n(i) layers of square brackets (if n(i) = 1 then [Ai] = \[Hi]); B is an array within \[] brackets 

and # is the remainder of the angle bracket array (including any 2- or higher order hyperseparators), 

 ‘a ‹ 0 [A1] 1 [A2] ... 1 [Ak] 1 \[B] c # › b’ 

    = ‘a ‹ b ‹A1’› b [A1] b ‹A2’› b [A2] ... b ‹Ak’› b [Ak] S \[B] c-1 # › b’, 

where S = ‘b ‹b ‹b ‹ ... ‹b ‹b \[C]b b› b› ... › b› b› b’ (with b-1 pairs of angle brackets, B ≠ ‘1 #*’) 

    = ‘b \‹C› b’     (B = ‘1 #*’, where #* is a non-empty string) 

and A1’, A2’, ... , Ak’, C are arrays that are identical to A1, A2, ... , Ak, B respectively except that the first 

entries of each have been reduced by 1 (see below for B = ‘1 #*’ and for backslash angle bracket 

arrays). When n(i) = 1 for some 1 ≤ i ≤ k then [Ai] = \[Hi] and ‘b ‹Ai’› b’ = ‘b \‹Hi’› b’. It is worth noting 

that \[H1] ≥ \[H2] ≥ ... ≥ \[Hk] ≥ \[B]. 

 

The S string is different when \[B] (above) begins with 1, since \[C]b cannot begin with 0 (as it is not an 

angle bracket array). Instead, C is placed in a backslash angle bracket array, which works in a similar 

way to a normal angle bracket array except that it creates backslash square (\[]) and backslash angle 

bracket (\‹›) arrays in their places. If \[B] = \[1 #*] then S = ‘b \‹0 #*› b’, which evaluates further in the 

examples below: 

 If  \[B] = \[1, d #*]  then  S = ‘b \‹b, d-1 #*› b’, 

 if  \[B] = \[1, 1, ... , 1, d #*]  (with m 1’s)  then  S = ‘b \‹ b, b, ... , b, d-1 #* › b’  (with m b’s in \‹›), 

 if  \[B] = \[1 [2] d #*]  then  S = ‘b \‹ b ‹1› b [2] d-1 #* › b’, 

 if  \[B] = \[1 [X] d #*]  then  S = ‘b \‹ b ‹X’› b [X] d-1 #* › b’, 

 if  \[B] = \[1 \ d #* #H]  then  S = ‘b \‹Rb #H› b’  with  Rn = ‘b ‹Rn-1› b \ d-1 #*’  and  R1 = ‘0’, 

 if  \[B] = \[1 [1 \2 m] d #* #H]  (m ≥ 3)  then  S = ‘b \‹ b ‹Rb› b [1 \2 m] d-1 #* #H › b’ 

    with  Rn = ‘b ‹Rn-1› b [1 \2 m] d-1 #* \2 m-1’  and  R1 = ‘0’, 

 if  \[B] = \[1 \[m #**] d #*]  (m ≥ 2)  then  S = ‘b \‹ T \[m #**] d-1 #* › b’ 

    with  T = ‘b ‹b ‹b ‹ ... ‹b ‹b \[m-1 #**]b b› b› ... › b› b› b’  (with b-1 pairs of angle brackets), 

 if  \[B] = \[1 \[1, e #**] d #*]  (m ≥ 2)  then  S = ‘b \‹ T \[1, e #**] d-1 #* › b’ 

    with  T = ‘b \‹0, e #**› b’ = ‘b \‹b, e-1 #**› b’, 

where #* and #** are the rest of their respective backslash arrays, #H is either an empty string or 

begins with the first 2- or higher hyperseparator in the backslash array, X does not begin with 1 and a 

2-hyperseparator (e.g. cannot be \ or [1 \2 m]) and X’ is identical to X except that the first entry is 

reduced by 1. If X begins with 1 and a 2-hyperseparator, we would need to use Angle Bracket Rules 

A5a-e (pages 24-25 of Beyond Bird’s Nested Arrays III) in order to find S. (Rules A5c-d entail 

repeating Rules A5a-e.) 

 

The backslash angle bracket array 

 ‘a \‹n #› b’ = ‘a \‹n-1 #› b \[n #] a \‹n-1 #› b \[n #] ... \[n #] a \‹n-1 #› b’ 

      (with b ‘a \‹n-1 #› b’ strings), 

mirroring Rule A6 for normal angle bracket arrays. Since the k ● symbols on the bottom of the first 

page of this document are shorthand for \[2] symbols, each of the S strings making up the array 

{a ‹ S ● S ● ... ● S ● T ● c-1 # › b}  are equal to 

 ‘b \‹1› b’ = ‘b \‹0› b \[1] b \‹0› b \[1] ... \[1] b \‹0› b’  (with b ‘b \‹0› b’ strings) 

               = ‘b \ b \ b \ ... \ b’    (with b b’s), 

as the [1]’s are removed and ‘b \‹0› b’ = ‘b’, just as ‘b ‹0 #› b’ = ‘b’ when # is a 2- or higher order 

hyperseparator (or omitted). 

 

When \[B] is \[1], the [1] is dropped, # splits into two and the string replacement equation becomes 

 ‘a ‹ 0 [A1] 1 [A2] ... 1 [Ak] 1 \ c # #H › b’ = ‘a ‹Rb #H› b’, 
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where Rn = ‘b ‹A1’› b [A1] b ‹A2’› b [A2] ... b ‹Ak’› b [Ak] b ‹Rn-1› b \ c-1 #’, 

 R1 = ‘0’ 

and #H is either an empty string or begins with a 2- or higher hyperseparator (not contained in the 

base of #). This is similar to Rule A5a. 

 

When B is a 1-hyperseparator array that contains the m-hyperseparator \[H]m, where H is the highest 

array within \[] brackets contained within B and placed within m layers of square brackets (m ≥ 2) as 

follows: 

 [B] = [B1], 

 [Bi] = [1 [Ai+1,1] 1 [Ai+1,2] ... 1 [Ai+1,k(i+1)] 1 [Bi+1] ci+1 #i+1] (1 ≤ i < m-1), 

 [Bm-1] = [1 [Am,1] 1 [Am,2] ... 1 [Am,k(m)] 1 \[H]m cm #m], 

where k(i) ≥ 0, ci ≥ 2 and each of [Ai,j] and [Bi] is an i-hyperseparator (any of the [Ai,j] may be replaced 

by a \[Ai,j]i symbol, which would mean that ‘b ‹Ai,j’› b’ is rewritten as ‘b \‹Ai,j’›i b’, see below), the string 

replacement equation becomes 

 ‘a ‹ 0 [A1] 1 [A2] ... 1 [Ak] 1 [B] c # › b’ 

    = ‘a ‹ b ‹A1’› b [A1] b ‹A2’› b [A2] ... b ‹Ak’› b [Ak] b ‹S1› b [B] c-1 # › b’, 

where Si = ‘b ‹Ai+1,1’› b [Ai+1,1] b ‹Ai+1,2’› b [Ai+1,2] ... b ‹Ai+1,k(i+1)’› b [Ai+1,k(i+1)] b ‹Si+1› b [Bi+1] ci+1-1 #i+1’ 

        (1 ≤ i < m-1), 

 Sm-1 = ‘b ‹Am,1’› b [Am,1] b ‹Am,2’› b [Am,2] ... b ‹Am,k(m)’› b [Am,k(m)] T \[H]m cm-1 #m’, 

 T = ‘b ‹b ‹b ‹ ... ‹b ‹b \[C]m+b-1 b› b› ... › b› b› b’ (with b-1 pairs of angle brackets, H ≠ ‘1 #*’) 

    = ‘b \‹C›m b’     (H = ‘1 #*’, where #* is a non-empty string) 

and Ai,j’ and C are identical to Ai,j and H respectively except that the first entries of each have been 

reduced by 1. 

 

Backslash angle brackets with subscripts work in a similar way to those without subscripts except that 

the square and angle bracket arrays created in their places would themselves contain subscripts, for 

example, 

 ‘3 \‹k #›n 3’ = ‘3 \‹k-1 #›n 3 \[k #]n 3 \‹k-1 #›n 3 \[k #]n 3 \‹k-1 #›n 3’ (k ≥ 1), 

 ‘a \‹0 [m #*] k #›n b’ = ‘a \‹b ‹m-1 #*› b [m #*] k-1 #›n b’  (k ≥ 2), 

where #* does not begin with a 2- or higher order hyperseparator when m = 1. If the # in the string 

‘a \‹0 #›n b’ does begin with a 2- or higher hyperseparator (or is empty) then ‘a \‹0 #›n b’ = ‘a’. 

 

If \[H]m is \[1]m, the [1] is omitted, and we would make m-1 applications of Rule A5d, followed by Rule 

A5b. 

 

In order to proceed further, it is time to introduce another all-new special symbol – the double 

backslash (\\), which requires a minimum of two pairs of square brackets enclosing it. By rewriting the 

n-hyperseparator \[X]n (for an array X) as [X \\ 2]n (so that \n is [1 \\ 2]n and ●n is [2 \\ 2]n), I obtain 

 [1 [1 \\ 3] 2]  has level  θ(εΩ2), 

 [1 [1 \\ 3] 1 [1 \\ 3] 2]  has level  θ(εΩ22), 

 [1 [2 [1 \\ 3]2 2] 2]  has level  θ(εΩ2ω), 

 [1 [1 \ 2 [1 \\ 3]2 2] 2]  has level  θ(εΩ2ε0), 

 [1 [1 [1 \\ 3] 2 [1 \\ 3]2 2] 2]  has level  θ(εΩ2θ(εΩ2)), 

 [1 [1 [1 [1 \\ 3] 2 [1 \\ 3]2 2] 2 [1 \\ 3]2 2] 2]  has level  θ(εΩ2θ(εΩ2θ(εΩ2))), 

 [1 [1 \2 2 [1 \\ 3]2 2] 2]  has level  θ(εΩ2Ω), 

 [1 [1 ●2 2 [1 \\ 3]2 2] 2]  has level  θ(εΩ2εΩ+1), 

 [1 [1 [3 \\ 2]2 2 [1 \\ 3]2 2] 2]  has level  θ(εΩ2εΩ+2), 

 [1 [1 [1 ● 2 \\ 2]2 2 [1 \\ 3]2 2] 2]  has level  θ(εΩ2ε(Ω+θ(εΩ+1))), 
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 [1 [1 [1 [1 [1 ● 2 \\ 2]2 2 [1 \\ 3]2 2] 2 \\ 2]2 2 [1 \\ 3]2 2] 2]  has level 

  θ(εΩ2ε(Ω+θ(εΩ2ε(Ω+θ(εΩ+1))))), 

 [1 [1 [1 \\ 3]2 3] 2]  has level  θ(εΩ2^2), 

 [1 [1 [1 \\ 3]2 4] 2]  has level  θ(εΩ2^3), 

 [1 [1 [1 \\ 3]2 1 \ 2] 2]  has level  θ(εΩ2^ε0), 

 [1 [1 [1 \\ 3]2 1 ● 2] 2]  has level  θ(εΩ2^θ(εΩ+1)), 

 [1 [1 [1 \\ 3]2 1 [1 \\ 3] 2] 2]  has level  θ(εΩ2^θ(εΩ2)), 

 [1 [1 [1 \\ 3]2 1 [1 [1 \\ 3]2 1 [1 \\ 3] 2] 2] 2]  has level  θ(εΩ2^θ(εΩ2^θ(εΩ2))), 

 [1 [1 [1 \\ 3]2 1 \2 2] 2]  has level  θ(εΩ2^Ω), 

 [1 [1 [1 \\ 3]2 1 [1 \3 3] 2] 2]  has level  θ(εΩ2^Ω^Ω), 

 [1 [1 [1 \\ 3]2 1 ●2 2] 2]  has level  θ(εΩ2^εΩ+1), 

 [1 [1 [1 \\ 3]2 1 [3 \\ 2]2 2] 2]  has level  θ(εΩ2^εΩ+2), 

 [1 [1 [1 \\ 3]2 1 [1 \\ 3]2 2] 2]  has level  θ(εΩ2^εΩ2), 

 [1 [1 [1 \\ 3]2 1 [1 \\ 3]2 1 [1 \\ 3]2 2] 2]  has level  θ(εΩ2^εΩ2^2), 

 [1 [1 [2 [1 \\ 3]3 2] 2] 2]  has level  θ(εΩ2^εΩ2^ω), 

 [1 [1 [1 \3 2 [1 \\ 3]3 2] 2] 2]  has level  θ(εΩ2^εΩ2^Ω), 

 [1 [1 [1 ●3 2 [1 \\ 3]3 2] 2] 2]  has level  θ(εΩ2^εΩ2^εΩ+1), 

 [1 [1 [1 [3 \\ 2]3 2 [1 \\ 3]3 2] 2] 2]  has level  θ(εΩ2^εΩ2^εΩ+2), 

 [1 [1 [1 [1 ● 2 \\ 2]3 2 [1 \\ 3]3 2] 2] 2]  has level  θ(εΩ2^εΩ2^ε(Ω+θ(εΩ+1))), 

 [1 [1 [1 [1 [1 [1 [1 ● 2 \\ 2]3 2 [1 \\ 3]3 2] 2] 2 \\ 2]3 2 [1 \\ 3]3 2] 2] 2]  has level 

  θ(εΩ2^εΩ2^ε(Ω+θ(εΩ2^εΩ2^ε(Ω+θ(εΩ+1))))), 

 [1 [1 [1 [1 \\ 3]3 3] 2] 2]  has level  θ(εΩ2^εΩ2^εΩ2), 

 [1 [1 [1 [1 \\ 3]3 1 [1 \\ 3]3 2] 2] 2]  has level  θ(εΩ2^εΩ2^εΩ2^εΩ2), 

 [1 [1 [1 [1 [1 \\ 3]4 3] 2] 2] 2]  has level  θ(εΩ2^εΩ2^εΩ2^εΩ2^εΩ2), 

 [1 [2 \\ 3] 2]  has level  θ(εΩ2+1), 

 [1 [3 \\ 3] 2]  has level  θ(εΩ2+2), 

 [1 [1 \ 2 \\ 3] 2]  has level  θ(ε(Ω2+ε0)), 

 [1 [1 [1 \\ 3] 2 \\ 3] 2]  has level  θ(ε(Ω2+θ(εΩ2))), 

 [1 [1 [1 [1 \\ 3] 2 \\ 3] 2 \\ 3] 2]  has level  θ(ε(Ω2+θ(ε(Ω2+θ(εΩ2))))). 

 

 [1 [1 \\ 4] 2]  has level  θ(εΩ3), 

 [1 [1 \\ 5] 2]  has level  θ(εΩ4), 

 [1 [1 \\ 1 \ 2] 2]  has level  θ(ε(Ωε0)), 

 [1 [1 \\ 1 ● 2] 2]  has level  θ(ε(Ωθ(εΩ+1))), 

 [1 [1 \\ 1 [1 \\ 1 ● 2] 2] 2]  has level  θ(ε(Ωθ(ε(Ωθ(εΩ+1))))), 

 [1 [1 \\ 1 [1 \\ 1 [1 \\ 1 ● 2] 2] 2] 2]  has level  θ(ε(Ωθ(ε(Ωθ(ε(Ωθ(εΩ+1))))))), 

 [1 [1 \\ 1 \\ 2] 2]  has level  θ(εΩ^2), 

 [1 [1 \\ 1 \\ 1 \\ 2] 2]  has level  θ(εΩ^3), 

 [1 [1 [2 \\2 2] 2] 2]  has level  θ(εΩ^ω)  (\\ = [1 \\2 2] just as \ = [1 \2 2]), 

 [1 [1 [1 \ 2 \\2 2] 2] 2]  has level  θ(ε(Ω^ε0)), 

 [1 [1 [1 ● 2 \\2 2] 2] 2]  has level  θ(ε(Ω^θ(εΩ+1))), 

 [1 [1 [1 [1 [1 ● 2 \\2 2] 2] 2 \\2 2] 2] 2]  has level  θ(ε(Ω^θ(ε(Ω^θ(εΩ+1))))), 

 [1 [1 [1 [1 [1 [1 [1 ● 2 \\2 2] 2] 2 \\2 2] 2] 2 \\2 2] 2] 2]  has level  θ(ε(Ω^θ(ε(Ω^θ(ε(Ω^θ(εΩ+1))))))). 

 

 [1 [1 [1 \\2 3] 2] 2]  has level  θ(εΩ^Ω), 

 [1 [1 \\ 2 [1 \\2 3] 2] 2]  has level  θ(εΩ^Ω+Ω), 

 [1 [1 [2 \\2 2] 2 [1 \\2 3] 2] 2]  has level  θ(εΩ^Ω+Ω^ω), 

 [1 [1 [1 \\2 3] 3] 2]  has level  θ(ε(Ω^Ω)2), 

 [1 [1 [1 \\2 3] 1 \\ 2] 2]  has level  θ(εΩ^(Ω+1)), 
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 [1 [1 [1 \\2 3] 1 [2 \\2 2] 2] 2]  has level  θ(εΩ^(Ω+ω)), 

 [1 [1 [1 \\2 3] 1 [1 \\2 3] 2] 2]  has level  θ(εΩ^(Ω2)), 

 [1 [1 [2 \\2 3] 2] 2]  has level  θ(εΩ^(Ωω)), 

 [1 [1 [1 \ 2 \\2 3] 2] 2]  has level  θ(ε(Ω^(Ωε0))), 

 [1 [1 [1 [1 [1 \\2 3] 2] 2 \\2 3] 2] 2]  has level  θ(ε(Ω^(Ωθ(εΩ^Ω)))), 

 [1 [1 [1 \\2 4] 2] 2]  has level  θ(εΩ^Ω^2), 

 [1 [1 [1 \\2 5] 2] 2]  has level  θ(εΩ^Ω^3), 

 [1 [1 [1 \\2 1 \ 2] 2] 2]  has level  θ(ε(Ω^Ω^ε0)), 

 [1 [1 [1 \\2 1 [1 [1 \\2 3] 2] 2] 2] 2]  has level  θ(ε(Ω^Ω^θ(εΩ^Ω))). 

 

 [1 [1 [1 \\2 1 \\2 2] 2] 2]  has level  θ(εΩ^Ω^Ω), 

 [1 [1 [1 \\2 1 \\2 1 \\2 2] 2] 2]  has level  θ(εΩ^Ω^Ω^2), 

 [1 [1 [1 [2 \\3 2] 2] 2] 2]  has level  θ(εΩ^Ω^Ω^ω) (in general, \\n = [1 \\n+1 2]), 

 [1 [1 [1 [1 \ 2 \\3 2] 2] 2] 2]  has level  θ(ε(Ω^Ω^Ω^ε0)), 

 [1 [1 [1 [1 [1 [1 \\2 1 \\2 2] 2] 2 \\3 2] 2] 2] 2]  has level  θ(ε(Ω^Ω^Ω^θ(εΩ^Ω^Ω))), 

 [1 [1 [1 [1 \\3 3] 2] 2] 2]  has level  θ(εΩ^Ω^Ω^Ω), 

 [1 [1 [1 [1 \\3 1 \\3 2] 2] 2] 2]  has level  θ(εΩ^Ω^Ω^Ω^Ω), 

 [1 [1 [1 [1 [1 \\4 3] 2] 2] 2] 2]  has level  θ(εΩ^Ω^Ω^Ω^Ω^Ω). 

The sequence of separators starting with the last three has limit ordinal θ(ε(εΩ+1)). This is Nested 

Hyper-Nested Array Notation extended to the next level. 

 

When the k ● symbols on the bottom of the first page of this document are each replaced by [d \\ e #*] 

separators (where d ≥ 2 and #* is the remainder of the separator array), S = ‘b ‹d-1 \\ e #*› b’ and the 

\b symbol in the T string would be replaced by the [d-1 \\ e #*]b separator. A double backslash array 

nested to the \\n level through an m-hyperseparator array ([]m brackets) evaluates in a similar fashion 

to a single backslash array nested to the \n+m level. The \\n symbol (requiring a minimum of n+1 pairs 

of square brackets in a curly bracket array) is an n-hyperseparator on the second level in the 

extension to my Nested Hyper-Nested Array Notation, so I will regard it as an (n, 2)-hyperseparator. 

 

The \[Hi]n(i), \[B], \[C]b, \[H]m and \[C]m+b-1 symbols on pages 3-4 (arrays within \[] brackets) can now be 

replaced by special separators that contain at least one (1, 2)-hyperseparator (\\n symbol enclosed by 

n-1 pairs of square brackets) in their ‘base layers’, for example,  [X \\ d #]m,  [X [Y \\2 e #2] d #1]m  and  

[X [Y [Z \\3 f #3] e #2] d #1]m,  where the capital letters denote strings of numbers and separators, lower 

case letters denote positive integers and # symbols represent the remainder of their respective 

separator arrays. (Similarly, the \‹C› and \‹C›m symbols within \‹› brackets can now be rewritten 

without the preceding backslash.) The separator subscript (m) is omitted whenever it is 1, as with 

single or double backslash subscripts. If the \[H]m symbol is rewritten as [H [S] d #*]m, where [S] is the 

first (1, 2)-hyperseparator array within the symbol, the \[C]m+b-1 and \‹C›m symbols would be rewritten 

as [C [S] d #*]m+b-1 and ‹C [S] d #*›m respectively. 

 

In the Angle Bracket Rules, the term ‘(j+1)-hyperseparator’ in Rules A5c-d is now renamed ‘2- or 

higher order hyperseparator’ since this includes (n, 2)-hyperseparators for any n (n would be less than 

j). An extra subrule within Rule A5 is created as follows:- 

 

Rule A5b* (separator [Ai,j(pi,j)] = [d #S]j, where d ≥ 2 and #S contains at least one 

(1, 2)-hyperseparator in its base layer): 

 Si,j = ‘b ‹Ai,j(1)’› b [Ai,j(1)] b ‹Ai,j(2)’› b [Ai,j(2)] ... b ‹Ai,j(pi,j-1)’› b [Ai,j(pi,j-1)] Rb [d #S]j ci,j-1 #i,j’, 

 Rn = ‘b ‹Rn-1› b’, 

 R1 = ‘b [d-1 #S]b+j-1 b’. 
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Note that Rule A5b* with [Ai,j(pi,j)] = [2 \\ 2]j would mean that R1 = ‘b [1 \\ 2]b+j-1 b’ = ‘b \b+j-1 b’. Setting 

j = 1 gives R1 = ‘b \b b’, which enables us to go beyond the Bachmann-Howard ordinal. 

 

If the separator  [Ai,j(pi,j)] = [1 [B1] 1 [B2] ... 1 [Bq] d #S]j,  where q ≥ 1, d ≥ 2, each of [Bi] is either a 

normal separator or 1-hyperseparator, and #S contains at least one (1, 2)-hyperseparator in its ‘base 

layer’, Rule A5e would apply, but with the separator [Ai,j(pi,j)] and the associated angle bracket array 

each carrying the subscript j: 

 Si,j = ‘b ‹Ai,j(1)’› b [Ai,j(1)] b ‹Ai,j(2)’› b [Ai,j(2)] ... b ‹Ai,j(pi,j-1)’› b [Ai,j(pi,j-1)] 

          b ‹Ai,j(pi,j)’›j b  [Ai,j(pi,j)]j  ci,j-1 #i,j’. 

 

Any 2- or higher hyperseparator may carry a subscript. For example, in Rule A5, if the 

j-hyperseparator [Ai,j(i*)], for some j ≥ 2 and 1 ≤ i* ≤ pi,j, has the subscript j, it is written [Ai,j(i*)]j, and the 

associated angle bracket array that replaces the preceding 1 would be ‘b ‹Ai,j(i*)’›j b’. 

 

Angle brackets with subscripts work in a similar way to those without them except that the square and 

angle bracket arrays created in their places would themselves contain subscripts, for example, 

 ‘3 ‹k #›n 3’ = ‘3 ‹k-1 #›n 3 [k #]n 3 ‹k-1 #›n 3 [k #]n 3 ‹k-1 #›n 3’ (k ≥ 1), 

 ‘a ‹0 [m #*] k #›n b’ = ‘a ‹b ‹m-1 #*› b [m #*] k-1 #›n b’  (k ≥ 2), 

where #* does not begin with a 2- or higher order hyperseparator when m = 1. For the purposes of 

Rules A2 and A5 (initial part), a ‘2- or higher order hyperseparator’ includes all (n, 2)-hyperseparators, 

where n ≥ 1. 

 

The only other modification to the Angle Bracket Rules is that the backslash in Rule A5b can be either 

a single backslash (\ j, where j ≥ 2) or double backslash (\\m, for some 1 ≤ m < j, in which case the \ j in 

the Rn,j-1 equation would be replaced by \\m). 

 

If the separator [Ai,j(pi,j)] = [1 [B] d #S]j, where [B] is a (1, 2)-hyperseparator, Rules A5c-d would apply 

unless [Ai,j(pi,j)] = [1 \\ 2]j = \ j (which is already covered by Rules A5a-b). 

 

If [H [S] d #*]m is of the form 

 [H*]m = [1 [S1,1] 1 [S1,2] ... 1 [S1,p(1)] d1 #*1]m, 

where [S1,p(1)] = \\      (h = 1), 

 [Si,p(i)] = [1 [Si+1,1] 1 [Si+1,2] ... 1 [Si+1,p(i+1)] di+1 #*i+1]  (1 ≤ i < h-1), 

 [Sh-1,p(h-1)] = [1 [Sh,1] 1 [Sh,2] ... 1 [Sh,p(h)-1] 1 \\h dh #*h] (h ≥ 2), 

p(i) ≥ 1, di ≥ 2 and each of [Si,j] is an (i, 2)-hyperseparator, the string replacement equation on page 4 

would become 

 ‘a ‹ 0 [A1] 1 [A2] ... 1 [Ak] 1 [B] c # › b’ 

    = ‘a ‹ b ‹A1’› b [A1] b ‹A2’› b [A2] ... b ‹Ak’› b [Ak] b ‹Rb,1› b [B] c-1 # › b’, 

where Rn,i = ‘b ‹Ai+1,1’› b [Ai+1,1] b ‹Ai+1,2’› b [Ai+1,2] ... b ‹Ai+1,k(i+1)’› b [Ai+1,k(i+1)] b ‹Rn,i+1› b [Bi+1] ci+1-1 #i+1’ 

        (1 ≤ i < m-1), 

 Rn,m-1 = ‘b ‹Am,1’› b [Am,1] b ‹Am,2’› b [Am,2] ... b ‹Am,k(m)’› b [Am,k(m)] b ‹Rn,m›m b [H*]m cm-1 #m’ 

        (m ≥ 2), 

 Rn,m+i-1 = ‘b ‹Si,1’› b [Si,1] b ‹Si,2’› b [Si,2] ... b ‹Si,p(i)-1’› b [Si,p(i)-1] b ‹Rn,m+i› b [Si,p(i)] di-1 #*i’ 

        (1 ≤ i < h), 

 Rn,m+h-1 = ‘b ‹Sh,1’› b [Sh,1] b ‹Sh,2’› b [Sh,2] ... b ‹Sh,p(h)-1’› b [Sh,p(h)-1] 

                 b ‹A1’› b [A1] b ‹A2’› b [A2] ... b ‹Ak’› b [Ak] b ‹Rn-1,1› b [B] c-1 #  \\h  dh-1 #*h’, 

 R1,1 = ‘0’ 

and Si,j’ is identical to Si,j except that the first entry is reduced by 1. (If m = 1, then [B] = [H*].) This is 

similar to Rules A5d and A5b – the former executed m+h-1 times (to find equations for initial string 
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S1,1 and Rb,1 to Rb,m+h-2), followed by the latter rule (Rb,m+h-1 onwards) – except that the single 

backslash is a double backslash. 

 

If the \\h symbol within the [Sh-1,p(h-1)] separator (or the [S1,p(1)] separator within [H*]m) is replaced by a 

string of 1’s and normal separators (0-hyperseparators) or 1-hyperseparators (below θ(εΩ+1) level), 

Rules A5a-e would be utilised as for separators below θ(εΩ+1) level in Beyond Bird’s Nested Arrays III. 

 

Among the simplest examples of arrays containing a double backslash is 

 N1 = {3, 3 [1 [1 \\ 3] 2] 2}. 

Here, m = h = 1 and 

 [B] = [H*] = [1 \\ 3], 

and it follows that 

 N1 = {3 ‹0 [1 \\ 3] 2› 3} 

      = {3 ‹3 ‹R3,1› 3› 3} 

      = {3 ‹3 ‹3 ‹R2,1› 3 \\ 2› 3› 3} 

      = {3 ‹3 ‹3 ‹3 ‹R1,1› 3 \\ 2› 3 \\ 2› 3› 3} 

      = {3 ‹3 ‹3 ‹3 \\ 2› 3 \\ 2› 3› 3} 

      = {3 ‹3 ‹ 3 ‹2 \\ 2› 3 [3 \\ 2] 3 ‹2 \\ 2› 3 [3 \\ 2] 3 ‹2 \\ 2› 3  \\  2 › 3› 3} 

      = {3 ‹3 ‹ 3 \ 3 \ 3 ● 3 \ 3 \ 3 ● 3 \ 3 \ 3  [3 \\ 2] 

                    3 \ 3 \ 3 ● 3 \ 3 \ 3 ● 3 \ 3 \ 3  [3 \\ 2] 

                    3 \ 3 \ 3 ● 3 \ 3 \ 3 ● 3 \ 3 \ 3  \\  2 › 3› 3}, 

using Rules A2 and A6, with ● as shorthand for [2 \\ 2]. Under Rule A2, 

 ‘3 ‹1 \\ 2› 3’ = ‘3 \ 3 \ 3’ 

since the double backslash (\\) counts as a ‘2- or higher order hyperseparator’ and the [1 \\ 2] symbol 

‘drops down’ to a single backslash (\). 

 

A slightly more complicated example is 

 N2 = {3, 3  [1 [1 [1 \\ 3]2 3] 2]  2}. 

In this case, m = 2, h = 1 and 

 [B] = [1 [1 \\ 3]2 3], 

 [H*]m = [1 \\ 3]2, 

and we obtain 

 N2 = {3 ‹0 [1 [1 \\ 3]2 3] 2› 3} 

      = {3 ‹3 ‹R3,1› 3› 3} 

      = {3 ‹3 ‹3 ‹R3,2›2 3 [1 \\ 3]2 2› 3› 3} 

      = {3 ‹3 ‹3 ‹3 ‹R2,1› 3 \\ 2›2 3 [1 \\ 3]2 2› 3› 3} 

      = {3 ‹3 ‹3 ‹3 ‹3 ‹R2,2›2 3 [1 \\ 3]2 2› 3 \\ 2›2 3 [1 \\ 3]2 2› 3› 3} 

      = {3 ‹3 ‹3 ‹3 ‹3 ‹3 ‹R1,1› 3 \\ 2›2 3 [1 \\ 3]2 2› 3 \\ 2›2 3 [1 \\ 3]2 2› 3› 3} 

      = {3 ‹3 ‹3 ‹3 ‹3 ‹3 \\ 2›2 3 [1 \\ 3]2 2› 3 \\ 2›2 3 [1 \\ 3]2 2› 3› 3} 

      = {3 ‹3 ‹3 ‹3 ‹ 3 \2 3 \2 3 ●2 3 \2 3 \2 3 ●2 3 \2 3 \2 3  [3 \\ 2]2 

                            3 \2 3 \2 3 ●2 3 \2 3 \2 3 ●2 3 \2 3 \2 3  [3 \\ 2]2 

                            3 \2 3 \2 3 ●2 3 \2 3 \2 3 ●2 3 \2 3 \2 3  [1 \\ 3]2  2 › 3 \\ 2›2 3 [1 \\ 3]2 2› 3› 3}, 

using Rules A2 and A6 (modified to handle angle bracket subscripts), with ●2 as shorthand for [2 \\ 2]2. 

The [1 \\ 2]2 symbol ‘drops down’ to \2. 

 

Another example is 

 N3 = {3, 2  [1 [1 [1 [1 \\2 3] 2]2 3] 2]  2}. 

In this case, m = h = 2 and 

 [B] = [1 [1 [1 \\2 3] 2]2 3], 
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 [H*]m = [1 [1 \\2 3] 2]2, 

 [S1,1] = [1 \\2 3], 

and we find that 

 N3 = {3 ‹0 [1 [1 [1 \\2 3] 2]2 3] 2› 2} 

      = {3 ‹2 ‹R2,1› 2› 2} 

      = {3 ‹2 ‹2 ‹R2,2›2 2  [1 [1 \\2 3] 2]2  2› 2› 2} 

      = {3 ‹2 ‹2 ‹2 ‹R2,3› 2›2 2  [1 [1 \\2 3] 2]2  2› 2› 2} 

      = {3 ‹2 ‹2 ‹2 ‹2 ‹R1,1› 2 \\2 2› 2›2 2  [1 [1 \\2 3] 2]2  2› 2› 2} 

      = {3 ‹2 ‹2 ‹2 ‹2 \\2 2› 2›2 2  [1 [1 \\2 3] 2]2  2› 2› 2} 

      = {3 ‹2 ‹2 ‹ 2 ‹1 \\2 2› 2 [2 \\2 2] 2 ‹1 \\2 2› 2 ›2 2  [1 [1 \\2 3] 2]2  2› 2› 2} 

      = {3 ‹2 ‹2 ‹ 2 \\ 2 [2 \\2 2] 2 \\ 2 ›2 2  [1 [1 \\2 3] 2]2  2› 2› 2}, 

using Rules A2 and A6. The [1 \\2 2] symbol ‘drops down’ to a double backslash (\\). Since 

 ‘2 ‹ 2 \\ 2 [2 \\2 2] 2 \\ 2 ›2 2’ 

    = ‘2 ‹ 1 \\ 2 [2 \\2 2] 2 \\ 2 ›2 2  [2 \\ 2 [2 \\2 2] 2 \\ 2]2  2 ‹ 1 \\ 2 [2 \\2 2] 2 \\ 2 ›2 2’ 

    = ‘2  [1 \\ 2 [2 \\2 2] 2 \\ 2]2  2  [2 \\ 2 [2 \\2 2] 2 \\ 2]2  2  [1 \\ 2 [2 \\2 2] 2 \\ 2]2  2’, 

using Rules A2 and A6 (modified to handle angle bracket subscripts), it follows that 

 N3 = {3 ‹2 ‹ 2  [1 \\ 2 [2 \\2 2] 2 \\ 2]2  2  [2 \\ 2 [2 \\2 2] 2 \\ 2]2 

                    2  [1 \\ 2 [2 \\2 2] 2 \\ 2]2  2  [1 [1 \\2 3] 2]2  2 › 2› 2}. 

 

Now I will bring in another all-new 1-hyperseparator symbol – the double black circle (●●). The 

smallest separator containing this symbol is the [1 ●● 2] separator. 

 

The θ(ε(εΩ+1)) level separator 

 {a, b [1 ●● 2] 2} = {a ‹0 ●● 2› b} 

                           = {a ‹b ‹b ‹ ... ‹b ‹b \\b b› b› ... › b› b› b}, 

       (with b+1 pairs of angle brackets). 

This is equivalent to 

 {a, b  [1 [1 [1 [ ... [1 [1 \\b 1, 2] 2] ... ] 2] 2] 2]  2} (with b+1 pairs of square brackets). 

 

 [1 ●● 2]  has level  θ(ε(εΩ+1)), 

 [1 [1 ●● 2] 2 ●● 2]  has level  θ(ε(εΩ+1))2, 

 [1 \ 2 ●● 2]  has level  ε(θ(ε(εΩ+1))+1) = θ(1, θ(ε(εΩ+1))+1), 

 [1 [1 \2 3] 2 ●● 2]  has level  Γ(θ(ε(εΩ+1))+1) = θ(Ω, θ(ε(εΩ+1))+1), 

 [1 ● 2 ●● 2]  has level  θ(εΩ+1, θ(ε(εΩ+1))+1), 

 [1 [1 \\ 3] 2 ●● 2]  has level  θ(εΩ2, θ(ε(εΩ+1))+1), 

 [1 [1 \\ 1 \\ 2] 2 ●● 2]  has level  θ(εΩ^2, θ(ε(εΩ+1))+1), 

 [1 [1 [1 \\2 3] 2] 2 ●● 2]  has level  θ(εΩ^Ω, θ(ε(εΩ+1))+1), 

 [1 ●● 3]  has level  θ(ε(εΩ+1), 1), 

 [1 ●● 1 [1 ●● 2] 2]  has level  θ(ε(εΩ+1), θ(ε(εΩ+1))), 

 [1 ●● 1 \ 2]  has level  θ(ε(εΩ+1)+1), 

 [1 ●● 1 ● 2]  has level  θ(ε(εΩ+1)+εΩ+1), 

 [1 ●● 1 [1 \\ 3] 2]  has level  θ(ε(εΩ+1)+εΩ2), 

 [1 ●● 1 ●● 2]  has level  θ(ε(εΩ+1)2), 

 [1 [2 ●●2 2] 2]  has level  θ(ε(εΩ+1)ω), 

 [1 [1 ●● 2 ●●2 2] 2]  has level  θ(ε(εΩ+1)θ(ε(εΩ+1))), 

 [1 [1 \2 2 ●●2 2] 2]  has level  θ(ε(εΩ+1)Ω), 

 [1 [1 \2 1 \2 2 ●●2 2] 2]  has level  θ(ε(εΩ+1)(Ω^Ω)), 

 [1 [1 [1 \3 3] 2 ●●2 2] 2]  has level  θ(ε(εΩ+1)(Ω^Ω^Ω)), 

 [1 [1 ●2 2 ●●2 2] 2]  has level  θ(ε(εΩ+1)εΩ+1), 
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 [1 [1 [3 \\ 2]2 2 ●●2 2] 2]  has level  θ(ε(εΩ+1)εΩ+2), 

 [1 [1 [1 \\ 3]2 2 ●●2 2] 2]  has level  θ(ε(εΩ+1)εΩ2), 

 [1 [1 [1 \\ 1 \\ 2]2 2 ●●2 2] 2]  has level  θ(ε(εΩ+1)εΩ^2), 

 [1 [1 [1 [1 \\2 3] 2]2 2 ●●2 2] 2]  has level  θ(ε(εΩ+1)εΩ^Ω), 

 [1 [1 [1 [1 \\2 1 \\2 2] 2]2 2 ●●2 2] 2]  has level  θ(ε(εΩ+1)εΩ^Ω^Ω), 

 [1 [1 [1 [1 [1 \\3 3] 2] 2]2 2 ●●2 2] 2]  has level  θ(ε(εΩ+1)εΩ^Ω^Ω^Ω), 

 [1 [1 ●●2 3] 2]  has level  θ(ε(εΩ+1)^2), 

 [1 [1 ●●2 4] 2]  has level  θ(ε(εΩ+1)^3), 

 [1 [1 ●●2 1 ●● 2] 2]  has level  θ(ε(εΩ+1)^θ(ε(εΩ+1))), 

 [1 [1 ●●2 1 \2 2] 2]  has level  θ(ε(εΩ+1)^Ω), 

 [1 [1 ●●2 1 ●2 2] 2]  has level  θ(ε(εΩ+1)^εΩ+1), 

 [1 [1 ●●2 1 [3 \\ 2]2 2] 2]  has level  θ(ε(εΩ+1)^εΩ+2), 

 [1 [1 ●●2 1 [1 \\ 3]2 2] 2]  has level  θ(ε(εΩ+1)^εΩ2), 

 [1 [1 ●●2 1 [1 \\ 1 \\ 2]2 2] 2]  has level  θ(ε(εΩ+1)^εΩ^2), 

 [1 [1 ●●2 1 [1 [1 \\2 3] 2]2 2] 2]  has level  θ(ε(εΩ+1)^εΩ^Ω), 

 [1 [1 ●●2 1 [1 [1 \\2 1 \\2 2] 2]2 2] 2]  has level  θ(ε(εΩ+1)^εΩ^Ω^Ω), 

 [1 [1 ●●2 1 [1 [1 [1 \\3 3] 2] 2]2 2] 2]  has level  θ(ε(εΩ+1)^εΩ^Ω^Ω^Ω), 

 [1 [1 ●●2 1 ●●2 2] 2]  has level  θ(ε(εΩ+1)^ε(εΩ+1)), 

 [1 [1 ●●2 1 ●●2 1 ●●2 2] 2]  has level  θ(ε(εΩ+1)^ε(εΩ+1)^2), 

 [1 [1 [2 ●●3 2] 2] 2]  has level  θ(ε(εΩ+1)^ε(εΩ+1)^ω), 

 [1 [1 [1 ●●3 3] 2] 2]  has level  θ(ε(εΩ+1)^ε(εΩ+1)^ε(εΩ+1)), 

 [1 [1 [1 ●●3 1 ●●3 2] 2] 2]  has level  θ(ε(εΩ+1)^ε(εΩ+1)^ε(εΩ+1)^ε(εΩ+1)), 

 [1 [1 [1 [1 ●●4 3] 2] 2] 2]  has level  θ(ε(εΩ+1)^ε(εΩ+1)^ε(εΩ+1)^ε(εΩ+1)^ε(εΩ+1)). 

The sequence of separators starting with the last three has limit ordinal θ(ε(εΩ+1+1)). 

 

The next stage launches the treble backslash (\\\), which requires a minimum of three pairs of square 

brackets around it. The symbol \\n = [1 \\\ 2]n in order to mirror \n = [1 \\ 2]n, and just as \n = [1 \n+1 2] 

and \\n = [1 \\n+1 2], the symbol \\\n = [1 \\\n+1 2]. The (n, 3)-hyperseparator \\\n needs a minimum 

enclosure of n+2 pairs of square brackets. Since I have exhausted \\ = [1 \\\ 2] prior to introducing the 

●● symbol, ●●n = [1 [2 \\\ 2] 2]n. The symbol [2 [2 \\\ 2] 2] comes next in the sequence after  ●●. 

 

 [1 [2 [2 \\\ 2] 2] 2]  has level  θ(ε(εΩ+1+1)), 

 [1 [3 [2 \\\ 2] 2] 2]  has level  θ(ε(εΩ+1+2)), 

 [1 [1 ●● 2 [2 \\\ 2] 2] 2]  has level  θ(ε(εΩ+1+θ(ε(εΩ+1)))), 

 [1 [1 \\ 2 [2 \\\ 2] 2] 2]  has level  θ(ε(εΩ+1+Ω)), 

 [1 [1 [1 \\2 3] 2 [2 \\\ 2] 2] 2]  has level  θ(ε(εΩ+1+Ω^Ω)), 

 [1 [1 [1 \\2 1 \\2 2] 2 [2 \\\ 2] 2] 2]  has level  θ(ε(εΩ+1+Ω^Ω^Ω)), 

 [1 [1 [1 [1 \\3 3] 2] 2 [2 \\\ 2] 2] 2]  has level  θ(ε(εΩ+1+Ω^Ω^Ω^Ω)), 

 [1 [1 [2 \\\ 2] 3] 2]  has level  θ(ε(εΩ+12)), 

 [1 [1 [2 \\\ 2] 4] 2]  has level  θ(ε(εΩ+13)), 

 [1 [1 [2 \\\ 2] 1 ●● 2] 2]  has level  θ(ε(εΩ+1θ(ε(εΩ+1)))), 

 [1 [1 [2 \\\ 2] 1 \\ 2] 2]  has level  θ(ε(εΩ+1Ω)), 

 [1 [1 [2 \\\ 2] 1 [1 \\2 3] 2] 2]  has level  θ(ε(εΩ+1Ω^Ω)), 

 [1 [1 [2 \\\ 2] 1 [2 \\\ 2] 2] 2]  has level  θ(ε(εΩ+1^2)), 

 [1 [1 [2 [2 \\\ 2]2 2] 2] 2]  has level  θ(ε(εΩ+1^ω)), 

 [1 [1 [1 ●● 2 [2 \\\ 2]2 2] 2] 2]  has level  θ(ε(εΩ+1^θ(ε(εΩ+1)))), 

 [1 [1 [1 \\2 2 [2 \\\ 2]2 2] 2] 2]  has level  θ(ε(εΩ+1^Ω)), 

 [1 [1 [1 \\2 1 \\2 2 [2 \\\ 2]2 2] 2] 2]  has level  θ(ε(εΩ+1^Ω^Ω)), 

 [1 [1 [1 [1 \\3 3] 2 [2 \\\ 2]2 2] 2] 2]  has level  θ(ε(εΩ+1^Ω^Ω^Ω)), 
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 [1 [1 [1 [2 \\\ 2]2 3] 2] 2]  has level  θ(ε(εΩ+1^εΩ+1)), 

 [1 [1 [1 [2 \\\ 2]2 4] 2] 2]  has level  θ(ε(εΩ+1^εΩ+1^2)), 

 [1 [1 [1 [2 \\\ 2]2 1 ●● 2] 2] 2]  has level  θ(ε(εΩ+1^εΩ+1^θ(ε(εΩ+1)))), 

 [1 [1 [1 [2 \\\ 2]2 1 \\2 2] 2] 2]  has level  θ(ε(εΩ+1^εΩ+1^Ω)), 

 [1 [1 [1 [2 \\\ 2]2 1 [1 \\3 3] 2] 2] 2]  has level  θ(ε(εΩ+1^εΩ+1^Ω^Ω)), 

 [1 [1 [1 [2 \\\ 2]2 1 [2 \\\ 2]2 2] 2] 2]  has level  θ(ε(εΩ+1^εΩ+1^εΩ+1)), 

 [1 [1 [1 [1 [2 \\\ 2]3 3] 2] 2] 2]  has level  θ(ε(εΩ+1^εΩ+1^εΩ+1^εΩ+1)), 

 [1 [1 [3 \\\ 2] 2] 2]  has level  θ(ε(εΩ+2)), 

 [1 [1 [4 \\\ 2] 2] 2]  has level  θ(ε(εΩ+3)), 

 [1 [1 [1 ●● 2 \\\ 2] 2] 2]  has level  θ(ε(ε(Ω+θ(ε(εΩ+1))))). 

 

 [1 [1 [1 \\\ 3] 2] 2]  has level  θ(ε(εΩ2)), 

 [1 [1 [1 \\\ 4] 2] 2]  has level  θ(ε(εΩ3)), 

 [1 [1 [1 \\\ 1 ●● 2] 2] 2]  has level  θ(ε(ε(Ωθ(ε(εΩ+1))))), 

 [1 [1 [1 \\\ 1 \\\ 2] 2] 2]  has level  θ(ε(εΩ^2)), 

 [1 [1 [1 \\\ 1 \\\ 1 \\\ 2] 2] 2]  has level  θ(ε(εΩ^3)), 

 [1 [1 [1 [2 \\\2 2] 2] 2] 2]  has level  θ(ε(εΩ^ω)), 

 [1 [1 [1 [1 ●● 2 \\\2 2] 2] 2] 2]  has level  θ(ε(ε(Ω^θ(ε(εΩ+1))))), 

 [1 [1 [1 [1 \\\2 3] 2] 2] 2]  has level  θ(ε(εΩ^Ω)), 

 [1 [1 [1 \\\ 2 [1 \\\2 3] 2] 2] 2]  has level  θ(ε(εΩ^Ω+Ω)), 

 [1 [1 [1 [2 \\\2 2] 2 [1 \\\2 3] 2] 2] 2]  has level  θ(ε(εΩ^Ω+Ω^ω)), 

 [1 [1 [1 [1 \\\2 3] 3] 2] 2]  has level  θ(ε(ε(Ω^Ω)2)), 

 [1 [1 [1 [1 \\\2 3] 1 \\\ 2] 2] 2]  has level  θ(ε(εΩ^(Ω+1))), 

 [1 [1 [1 [1 \\\2 3] 1 [2 \\\2 2] 2] 2] 2]  has level  θ(ε(εΩ^(Ω+ω))), 

 [1 [1 [1 [1 \\\2 3] 1 [1 \\\2 3] 2] 2] 2]  has level  θ(ε(εΩ^(Ω2))), 

 [1 [1 [1 [2 \\\2 3] 2] 2] 2]  has level  θ(ε(εΩ^(Ωω))), 

 [1 [1 [1 [1 [1 [1 [1 \\\2 3] 2] 2] 2 \\\2 3] 2] 2] 2]  has level  θ(ε(ε(Ω^(Ωθ(ε(εΩ^Ω)))))), 

 [1 [1 [1 [1 \\\2 4] 2] 2] 2]  has level  θ(ε(εΩ^Ω^2)), 

 [1 [1 [1 [1 \\\2 5] 2] 2] 2]  has level  θ(ε(εΩ^Ω^3)), 

 [1 [1 [1 [1 \\\2 1 [1 [1 [1 \\\2 3] 2] 2] 2] 2] 2] 2]  has level  θ(ε(ε(Ω^Ω^θ(ε(εΩ^Ω))))), 

 [1 [1 [1 [1 \\\2 1 \\\2 2] 2] 2] 2]  has level  θ(ε(εΩ^Ω^Ω)), 

 [1 [1 [1 [1 \\\2 1 \\\2 1 \\\2 2] 2] 2] 2]  has level  θ(ε(εΩ^Ω^Ω^2)), 

 [1 [1 [1 [1 [2 \\\3 2] 2] 2] 2] 2]  has level  θ(ε(εΩ^Ω^Ω^ω)), 

 [1 [1 [1 [1 [1 [1 [1 [1 \\\2 1 \\\2 2] 2] 2] 2 \\\3 2] 2] 2] 2] 2]  has level  θ(ε(ε(Ω^Ω^Ω^θ(ε(εΩ^Ω^Ω))))), 

 [1 [1 [1 [1 [1 \\\3 3] 2] 2] 2] 2]  has level  θ(ε(εΩ^Ω^Ω^Ω)), 

 [1 [1 [1 [1 [1 \\\3 1 \\\3 2] 2] 2] 2] 2]  has level  θ(ε(εΩ^Ω^Ω^Ω^Ω)), 

 [1 [1 [1 [1 [1 [1 \\\4 3] 2] 2] 2] 2] 2]  has level  θ(ε(εΩ^Ω^Ω^Ω^Ω^Ω)). 

The sequence of separators starting with the last three has limit ordinal θ(ε(ε(εΩ+1))). 

 

At this stage, it is better to rewrite \\n as \n,2 and \\\n as \n,3. The symbols \\ and \\\ can be rewritten as 

\1,2 and \1,3 respectively; \n,1 is \n (remove trailing 1’s). There are two directions of travel for the 

generalised (m, n)-hyperseparator double subscript backslash symbol (\m,n), since 

 \m,n = [1 \m+1,n 2] = [1 \1,n+1 2]m (both [1 \m+1,n 2] and [1 \1,n+1 2]m ‘drop down’ to \m,n). 

\m,n requires a minimum of m+n-1 pairs of square brackets around it in order to be used in an array. 

 

With k pairs of square brackets (k ≥ 2), 

 {a, b  [1 [1 [ ... [1 [2 \1,k 2] 2] ... ] 2] 2]  2} = {a ‹0 [1 [ ... [1 [2 \1,k 2] 2] ... ] 2] 2› b} 

                                                                 = {a ‹b ‹b ‹ ... ‹b ‹b \b,k-1 b› b› ... › b› b› b} 

        (with b+k-2 pairs of angle brackets). 
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The most significant separators introduced so far (beyond Bachmann-Howard ordinal level) are:- 

 [1 [2 \1,2 2] 2]  has level  θ(εΩ+1), 

 [1 [2 \1,2 2] 3]  has level  θ(εΩ+1, 1), 

 [1 [2 \1,2 2] 1 \ 2]  has level  θ(εΩ+1+1), 

 [1 [2 \1,2 2] 1 [2 \1,2 2] 2]  has level  θ(εΩ+12), 

 [1 [2 [2 \1,2 2]2 2] 2]  has level  θ(εΩ+1ω), 

 [1 [1 [2 \1,2 2] 2 [2 \1,2 2]2 2] 2]  has level  θ(εΩ+1θ(εΩ+1)), 

 [1 [1 \2 2 [2 \1,2 2]2 2] 2]  has level  θ(εΩ+1Ω), 

 [1 [1 [2 \1,2 2]2 3] 2]  has level  θ(εΩ+1^2), 

 [1 [1 [2 \1,2 2]2 1 \ 2] 2]  has level  θ(εΩ+1^ε0), 

 [1 [1 [2 \1,2 2]2 1 [2 \1,2 2] 2] 2]  has level  θ(εΩ+1^θ(εΩ+1)), 

 [1 [1 [2 \1,2 2]2 1 \2 2] 2]  has level  θ(εΩ+1^Ω), 

 [1 [1 [2 \1,2 2]2 1 [2 \1,2 2]2 2] 2]  has level  θ(εΩ+1^εΩ+1), 

 [1 [1 [1 [2 \1,2 2]3 3] 2] 2]  has level  θ(εΩ+1^εΩ+1^εΩ+1), 

 [1 [3 \1,2 2] 2]  has level  θ(εΩ+2), 

 [1 [1 \ 2 \1,2 2] 2]  has level  θ(ε(Ω+ε0)), 

 [1 [1 [2 \1,2 2] 2 \1,2 2] 2]  has level  θ(ε(Ω+θ(εΩ+1))), 

 [1 [1 \1,2 3] 2]  has level  θ(εΩ2), 

 [1 [1 \1,2 1 \1,2 2] 2]  has level  θ(εΩ^2), 

 [1 [1 [2 \2,2 2] 2] 2]  has level  θ(εΩ^ω), 

 [1 [1 [1 \2,2 3] 2] 2]  has level  θ(εΩ^Ω), 

 [1 [1 [1 \2,2 1 \2,2 2] 2] 2]  has level  θ(εΩ^Ω^Ω), 

 [1 [1 [1 [1 \3,2 3] 2] 2] 2]  has level  θ(εΩ^Ω^Ω^Ω), 

 [1 [1 [2 \1,3 2] 2] 2]  has level  θ(ε(εΩ+1)), 

 [1 [2 [2 \1,3 2] 2] 2]  has level  θ(ε(εΩ+1+1)), 

 [1 [1 \1,2 2 [2 \1,3 2] 2] 2]  has level  θ(ε(εΩ+1+Ω)), 

 [1 [1 [2 \1,3 2] 3] 2]  has level  θ(ε(εΩ+12)), 

 [1 [1 [2 \1,3 2] 1 \1,2 2] 2]  has level  θ(ε(εΩ+1Ω)), 

 [1 [1 [2 \1,3 2] 1 [2 \1,3 2] 2] 2]  has level  θ(ε(εΩ+1^2)), 

 [1 [1 [1 [2 \1,3 2]2 3] 2] 2]  has level  θ(ε(εΩ+1^εΩ+1)), 

 [1 [1 [3 \1,3 2] 2] 2]  has level  θ(ε(εΩ+2)), 

 [1 [1 [1 \1,3 3] 2] 2]  has level  θ(ε(εΩ2)), 

 [1 [1 [1 \1,3 1 \1,3 2] 2] 2]  has level  θ(ε(εΩ^2)), 

 [1 [1 [1 [2 \2,3 2] 2] 2] 2]  has level  θ(ε(εΩ^ω)), 

 [1 [1 [1 [1 \2,3 3] 2] 2] 2]  has level  θ(ε(εΩ^Ω)), 

 [1 [1 [1 [1 \2,3 1 \2,3 2] 2] 2] 2]  has level  θ(ε(εΩ^Ω^Ω)), 

 [1 [1 [1 [1 [1 \3,3 3] 2] 2] 2] 2]  has level  θ(ε(εΩ^Ω^Ω^Ω)). 

 

Continuing this sequence, I obtain 

 [1 [1  [1 [2 \1,4 2] 2]  2] 2]  has level  θ(ε(ε(εΩ+1))), 

 [1 [2  [1 [2 \1,4 2] 2]  2] 2]  has level  θ(ε(ε(εΩ+1)+1)), 

 [1 [1  [1 [2 \1,4 2] 2]  3] 2]  has level  θ(ε(ε(εΩ+1)2)), 

 [1 [1  [1 [2 \1,4 2] 2]  1  [1 [2 \1,4 2] 2]  2] 2]  has level  θ(ε(ε(εΩ+1)^2)), 

 [1 [1 [2  [1 [2 \1,4 2] 2]2  2] 2] 2]  has level  θ(ε(ε(εΩ+1)^ω)), 

 [1 [1 [1  [1 [2 \1,4 2] 2]2  3] 2] 2]  has level  θ(ε(ε(εΩ+1)^ε(εΩ+1))), 

 [1 [1 [2  [2 \1,4 2]  2] 2] 2]  has level  θ(ε(ε(εΩ+1+1))), 

 [1 [1 [1  [2 \1,4 2]  3] 2] 2]  has level  θ(ε(ε(εΩ+12))), 

 [1 [1 [1  [2 \1,4 2]  1  [2 \1,4 2]  2] 2] 2]  has level  θ(ε(ε(εΩ+1^2))), 

 [1 [1 [1 [2  [2 \1,4 2]2  2] 2] 2] 2]  has level  θ(ε(ε(εΩ+1^ω))), 
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 [1 [1 [1 [1  [2 \1,4 2]2  3] 2] 2] 2]  has level  θ(ε(ε(εΩ+1^εΩ+1))), 

 [1 [1 [1 [3 \1,4 2] 2] 2] 2]  has level  θ(ε(ε(εΩ+2))), 

 [1 [1 [1 [1 \1,4 3] 2] 2] 2]  has level  θ(ε(ε(εΩ2))), 

 [1 [1 [1 [1 \1,4 1 \1,4 2] 2] 2] 2]  has level  θ(ε(ε(εΩ^2))), 

 [1 [1 [1 [1 [2 \2,4 2] 2] 2] 2] 2]  has level  θ(ε(ε(εΩ^ω))), 

 [1 [1 [1 [1 [1 \2,4 3] 2] 2] 2] 2]  has level  θ(ε(ε(εΩ^Ω))), 

 [1 [1 [1 [1 [1 \2,4 1 \2,4 2] 2] 2] 2] 2]  has level  θ(ε(ε(εΩ^Ω^Ω))), 

 [1 [1 [1 [1 [1 [1 \3,4 3] 2] 2] 2] 2] 2]  has level  θ(ε(ε(εΩ^Ω^Ω^Ω))), 

 [1 [1 [1 [1 [2 \1,5 2] 2] 2] 2] 2]  has level  θ(ε(ε(ε(εΩ+1)))), 

 [1 [1 [1 [1 [3 \1,5 2] 2] 2] 2] 2]  has level  θ(ε(ε(ε(εΩ+2)))), 

 [1 [1 [1 [1 [1 \1,5 3] 2] 2] 2] 2]  has level  θ(ε(ε(ε(εΩ2)))), 

 [1 [1 [1 [1 [1 \1,5 1 \1,5 2] 2] 2] 2] 2]  has level  θ(ε(ε(ε(εΩ^2)))), 

 [1 [1 [1 [1 [1 [1 \2,5 3] 2] 2] 2] 2] 2]  has level  θ(ε(ε(ε(εΩ^Ω)))), 

 [1 [1 [1 [1 [1 [1 \2,5 1 \2,5 2] 2] 2] 2] 2] 2]  has level  θ(ε(ε(ε(εΩ^Ω^Ω)))), 

 [1 [1 [1 [1 [1 [1 [1 \3,5 3] 2] 2] 2] 2] 2] 2]  has level  θ(ε(ε(ε(εΩ^Ω^Ω^Ω)))), 

 [1 [1 [1 [1 [1 [2 \1,6 2] 2] 2] 2] 2] 2]  has level  θ(ε(ε(ε(ε(εΩ+1))))), 

 [1 [1 [1 [1 [1 [1 [2 \1,7 2] 2] 2] 2] 2] 2] 2]  has level  θ(ε(ε(ε(ε(ε(εΩ+1)))))), 

 [1 [1 [1 [1 [1 [1 [1 [2 \1,8 2] 2] 2] 2] 2] 2] 2] 2]  has level  θ(ε(ε(ε(ε(ε(ε(εΩ+1))))))). 

The sequence of separators starting with the last three has limit ordinal θ(ζΩ+1) = θ(φ(2, Ω+1)). 

 

If [H*]m on page 7 consists of many layers of separators, where 

 [Xi,p(i)] = [1 [Xi+1,1] 1 [Xi+1,2] ... 1 [Xi+1,p(i+1)] ki+1 #i+1], 

eventually finishing up with [Xx,p(x)] = \r,s for some r, s and x (instead of \\h), the road from Rn,1 to Rn-1,1 

would be split up into s parts. The first part would process the i-hyperseparators (each ending in [Bi]’s, 

up to [Bm] = [H*]m; i increases from 2 to m), the second part would process the (i, 2)-hyperseparators 

(up to the set ending in, say, [H*2]m(2); i increases from 1 to m(2)), the third part would process the 

(i, 3)-hyperseparators (up to the set ending in [H*3]m(3)), and so on, up to the final (sth) part, which 

finishes with the (r, s)-hyperseparators and the 1-hyperseparators all in one string. There would be 

t = m+m(2)+m(3)+...+m(s)-1 layers in all (note that m(s) = r), with up to s-1 of those layers having 

subscripts to the square brackets. The Rn,t string would contain the (r, s)-hyperseparators and the 

1-hyperseparators with the latter set sandwiched in between the penultimate (r, s)-hyperseparator and 

the \r,s symbol. Rule A5d would be applied t times (to find equations for initial string S1,1 and Rb,1 to 

Rb,t-1), followed by Rule A5b (Rb,t onwards). 

 

An (m, n)-hyperseparator is either a \m,n symbol or contains at least one \m+k,n symbol inside k pairs of 

square brackets or at least one \1,n+1 symbol or (1, n+1)-hyperseparator inside k+1 pairs of square 

brackets (with the highest of the layers having an m+k subscript), for some value of k – but at every 

value of k there are no \m+k,n symbols inside fewer than k pairs of square brackets or \1,n+1 symbols or 

(1, n+1)-hyperseparators inside fewer than k+1 pairs of square brackets (with the highest of the layers 

having an m+k subscript). An (n, 1)-hyperseparator is an n-hyperseparator. 

 

Putting it another way, a \m,n symbol is an (m, n)-hyperseparator, \m,n enclosed by k pairs of square 

brackets is an (m-k, n)-hyperseparator (m > k), \m,n enclosed by m pairs of square brackets 

(subscripted by k at the bottom) is a (k, n-1)-hyperseparator (n ≥ 2), \m,n enclosed by m pairs of square 

brackets (with no subscript at the bottom) is a (1, n-1)-hyperseparator (n ≥ 2). A \m,n symbol enclosed 

by m pairs of square brackets (subscripted by m2 at the bottom), enclosed by m2 pairs of square 

brackets (subscripted by m3 at the bottom), ... , enclosed by mn-1 pairs of square brackets (subscripted 

by mn at the bottom), enclosed by mn pairs of square brackets is a normal separator 

(0-hyperseparator). 
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The recursive definition of an (m, n)-hyperseparator is that it is either a \m,n symbol or contains either 

at least one (m+1, n)-hyperseparator in its ‘base layer’ or is subscripted by m and contains at least 

one (1, n+1)-hyperseparator in its ‘base layer’. 

 

An (m1, n1)-hyperseparator cannot be on the same ‘nested level’ as an (m2, n2)-hyperseparator unless 

both hyperseparators are of the same level (both m1 = m2 and n1 = n2) or one (or both) separators are 

either normal or 1-hyperseparators. Suppose that k separators [X1], [X2], ... , [Xk] appear on the same 

‘nested level’ somewhere within a giant normal separator [N], as in this example 

 [N] = [# [n1 [X1] n2 [X2] ... nk [Xk] nk+1] #*]  (# and #* represent the remainder of N). 

If one of the [Xi] is a 2- or higher hyperseparator, say, an (m, n)-hyperseparator, then each of the [Xi] 

is either a normal separator, a 1-hyperseparator or an (m, n)-hyperseparator. 

 

Rules A5b and A5b* are modified as follows:- 

 

The single or double backslash in Rule A5b is now the generalised double subscript backslash \r,s 

symbol, where either r ≥ 2 or s ≥ 2. The \ j in the Rn,j-1 equation is replaced by \r,s. 

 

Rule A5b* (separator [Ai,j(pi,j)] = [d #S]m, where d ≥ 2 and #S contains at least one 

(1, k)-hyperseparator in its base layer, where k ≥ 2): 

 Si,j = ‘b ‹Ai,j(1)’› b [Ai,j(1)] b ‹Ai,j(2)’› b [Ai,j(2)] ... b ‹Ai,j(pi,j-1)’› b [Ai,j(pi,j-1)] Rb [d #S]m ci,j-1 #i,j’, 

 Rn = ‘b ‹Rn-1› b’, 

 R1 = ‘b [d-1 #S]m+b-1 b’. 

 

Note that Rule A5b* with the lowest (1, k)-hyperseparator within #S, [Ai,j(pi,j)] = [2 \1,k 2]m would mean 

that R1 = ‘b [1 \1,k 2]m+b-1 b’ = ‘b \m+b-1,k-1 b’. By setting m = 1, we achieve R1 = ‘b \b,k-1 b’, which is how 

the \1,k symbol is reduced to the \b,k-1 symbol. 

 

If the separator  [Ai,j(pi,j)] = [1 [B1] 1 [B2] ... 1 [Bq] d #S]m,  where q ≥ 1, d ≥ 2, each of [Bi] is either a 

normal separator or 1-hyperseparator, and #S contains at least one (1, k)-hyperseparator in its ‘base 

layer’, where k ≥ 2, Rule A5e would apply, but with the separator [Ai,j(pi,j)] and the associated angle 

bracket array each carrying the subscript m: 

 Si,j = ‘b ‹Ai,j(1)’› b [Ai,j(1)] b ‹Ai,j(2)’› b [Ai,j(2)] ... b ‹Ai,j(pi,j-1)’› b [Ai,j(pi,j-1)] 

          b ‹Ai,j(pi,j)’›m b  [Ai,j(pi,j)]m  ci,j-1 #i,j’. 

 

I can now expand the double subscript in the backslash symbol so that it too becomes an array in its 

own right. The single backslash with no subscripts has an infinite number of pathways, since 

 \ = [1 \2 2] = [1 \1,2 2] = [1 \1,1,2 2] = [1 \1,1,1,2 2] = ... . 

When there are k subscripts, the (n1, n2, n3, ... , nk)-hyperseparator backslash symbol 

 \n1,n2,n3,...,nk = [1 \n1+1,n2,n3,...,nk 2] 

                   = [1 \1,n2+1,n3,...,nk 2]n1 

                   = [1 \1,1,n3+1,n4,...,nk 2]n1,n2 

                   = ...... 

                   = [1 \1,1,1,...,1,nk+1 2]n1,n2,n3,...,nk-1 (with k-1 1’s) 

                   = [1 \1,1,1,...,1,2 2]n1,n2,n3,...,nk  (with k or more 1’s) 

requires a minimum of n1+n2+n3+...+nk-(k-1) pairs of square brackets around it in order to turn in into a 

normal separator and be used in the ‘base layer’ of a curly bracket array. The backslash itself in the 

above equalities (other than the last one) may be substituted by a separator array that contains at 

least one (1, 1, 1, ... , 1, r1, r2, ...)-hyperseparator (with at least k 1’s and r1 ≥ 2) in its ‘base layer’, for 

example, 
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 [X \1,1,1,...,1,m Y]n1,n2,n3,...,nk = [1 [X \1,1,1,...,1,m Y]1,1,n3+1,n4,...,nk 2]n1,n2 

  (with k 1’s prior to m ≥ 2; X and Y are strings either side of \1,1,1,...,1,m). 

 

The θ(ζΩ+1) level separator 

 {a, b [1 [2 \1,1,2 2] 2] 2} = {a ‹0 [2 \1,1,2 2] 2› b} 

                                    = {a ‹b ‹b ‹ ... ‹b ‹b \1,b b› b› ... › b› b› b} 

       (with b pairs of angle brackets). 

This is equivalent to 

 {a, b  [1 [1 [1 [ ... [1 [1 \1,b 1, 2] 2] ... ] 2] 2] 2]  2} (with b pairs of square brackets). 

 

In general, with k 1’s in the subscript, 

 {a, b [1 [c \1,1,1,...,1,2 2] 2] 2} = {a ‹0 [c \1,1,1,...,1,2 2] 2› b} 

                                           = {a ‹b ‹b ‹ ... ‹b ‹b [c-1 \1,1,1,...,1,2 2]1,1,...,1,b b› b› ... › b› b› b} 

     (with b pairs of angle brackets and k-1 1’s in 1,1,...,1,b). 

When c = 2, the separator  [1 \1,1,1,...,1,2 2]1,1,...,1,b  ‘drops down’ to \1,1,...,1,b (with k-1 1’s in 1,1,...,1,b). 

 

 [1  [2 \1,1,2 2]  2]  has level  θ(ζΩ+1) = θ(φ(2, Ω+1)), 

 [1  [2 \1,1,2 2]  3]  has level  θ(ζΩ+1, 1), 

 [1  [2 \1,1,2 2]  1 \ 2]  has level  θ(ζΩ+1+1), 

 [1  [2 \1,1,2 2]  1  [2 \1,1,2 2]  2]  has level  θ(ζΩ+12), 

 [1 [2  [2 \1,1,2 2]2  2] 2]  has level  θ(ζΩ+1ω), 

 [1 [1 \ 2  [2 \1,1,2 2]2  2] 2]  has level  θ(ζΩ+1ε0), 

 [1 [1 [2 \1,1,2 2] 2  [2 \1,1,2 2]2  2] 2]  has level  θ(ζΩ+1θ(ζΩ+1)), 

 [1 [1 \2 2  [2 \1,1,2 2]2  2] 2]  has level  θ(ζΩ+1Ω), 

 [1 [1 ●2 2  [2 \1,1,2 2]2  2] 2]  has level  θ(ζΩ+1εΩ+1)  (●2 = [2 \1,2 2]2), 

 [1 [1 ●●2 2  [2 \1,1,2 2]2  2] 2]  has level  θ(ζΩ+1ε(εΩ+1)) (●●2 = [1 [2 \1,3 2] 2]2), 

 [1 [1  [2 \1,1,2 2]2  3] 2]  has level  θ(ζΩ+1^2), 

 [1 [1  [2 \1,1,2 2]2  1 \2 2] 2]  has level  θ(ζΩ+1^Ω), 

 [1 [1  [2 \1,1,2 2]2  1 ●2 2] 2]  has level  θ(ζΩ+1^εΩ+1), 

 [1 [1  [2 \1,1,2 2]2  1 ●●2 2] 2]  has level  θ(ζΩ+1^ε(εΩ+1)), 

 [1 [1  [2 \1,1,2 2]2  1  [2 \1,1,2 2]2  2] 2]  has level  θ(ζΩ+1^ζΩ+1), 

 [1 [1 [1  [2 \1,1,2 2]3  3] 2] 2]  has level  θ(ζΩ+1^ζΩ+1^ζΩ+1), 

 [1 [1 [1  [2 \1,1,2 2]3  1  [2 \1,1,2 2]3  2] 2] 2]  has level  θ(ζΩ+1^ζΩ+1^ζΩ+1^ζΩ+1), 

 [1 [1 [1 [1  [2 \1,1,2 2]4  3] 2] 2] 2]  has level  θ(ζΩ+1^ζΩ+1^ζΩ+1^ζΩ+1^ζΩ+1). 

 

 [1 [2  [2 \1,1,2 2]1,2  2] 2]  has level  θ(ε(ζΩ+1+1))  ([2 \1,1,2 2] = [1 [2 \1,1,2 2]1,2 2]), 

 [1 [3  [2 \1,1,2 2]1,2  2] 2]  has level  θ(ε(ζΩ+1+2)), 

 [1 [1 \1,2 2  [2 \1,1,2 2]1,2  2] 2]  has level  θ(ε(ζΩ+1+Ω)), 

 [1 [1 [2 \1,3 2] 2  [2 \1,1,2 2]1,2  2] 2]  has level  θ(ε(ζΩ+1+εΩ+1)), 

 [1 [1 [1 [2 \1,4 2] 2] 2  [2 \1,1,2 2]1,2  2] 2]  has level  θ(ε(ζΩ+1+ε(εΩ+1))), 

 [1 [1  [2 \1,1,2 2]1,2  3] 2]  has level  θ(ε(ζΩ+12)), 

 [1 [1  [2 \1,1,2 2]1,2  1 \1,2 2] 2]  has level  θ(ε(ζΩ+1Ω)), 

 [1 [1  [2 \1,1,2 2]1,2  1 [2 \1,3 2] 2] 2]  has level  θ(ε(ζΩ+1εΩ+1)), 

 [1 [1  [2 \1,1,2 2]1,2  1 [1 [2 \1,4 2] 2] 2] 2]  has level  θ(ε(ζΩ+1ε(εΩ+1))), 

 [1 [1  [2 \1,1,2 2]1,2  1  [2 \1,1,2 2]1,2  2] 2]  has level  θ(ε(ζΩ+1^2)), 

 [1 [1 [2  [2 \1,1,2 2]2,2  2] 2] 2]  has level  θ(ε(ζΩ+1^ω)), 

 [1 [1 [1 \2,2 2  [2 \1,1,2 2]2,2  2] 2] 2]  has level  θ(ε(ζΩ+1^Ω)), 

 [1 [1 [1 [2 \1,3 2]2 2  [2 \1,1,2 2]2,2  2] 2] 2]  has level  θ(ε(ζΩ+1^εΩ+1))  (\2,2 = [1 \1,3 2]2), 

 [1 [1 [1 [1 [2 \1,4 2] 2]2 2  [2 \1,1,2 2]2,2  2] 2] 2]  has level  θ(ε(ζΩ+1^ε(εΩ+1))), 
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 [1 [1 [1  [2 \1,1,2 2]2,2  3] 2] 2]  has level  θ(ε(ζΩ+1^ζΩ+1)), 

 [1 [1 [1  [2 \1,1,2 2]2,2  1 \2,2 2] 2] 2]  has level  θ(ε(ζΩ+1^ζΩ+1^Ω)), 

 [1 [1 [1  [2 \1,1,2 2]2,2  1 [2 \1,3 2]2 2] 2] 2]  has level  θ(ε(ζΩ+1^ζΩ+1^εΩ+1)), 

 [1 [1 [1  [2 \1,1,2 2]2,2  1 [1 [2 \1,4 2] 2]2 2] 2] 2]  has level  θ(ε(ζΩ+1^ζΩ+1^ε(εΩ+1))), 

 [1 [1 [1  [2 \1,1,2 2]2,2  1  [2 \1,1,2 2]2,2  2] 2] 2]  has level  θ(ε(ζΩ+1^ζΩ+1^ζΩ+1)), 

 [1 [1 [1 [1  [2 \1,1,2 2]3,2  3] 2] 2] 2]  has level  θ(ε(ζΩ+1^ζΩ+1^ζΩ+1^ζΩ+1)), 

 [1 [1 [1 [1  [2 \1,1,2 2]3,2  1  [2 \1,1,2 2]3,2  2] 2] 2] 2]  has level  θ(ε(ζΩ+1^ζΩ+1^ζΩ+1^ζΩ+1^ζΩ+1)), 

 [1 [1 [1 [1 [1  [2 \1,1,2 2]4,2  3] 2] 2] 2] 2]  has level  θ(ε(ζΩ+1^ζΩ+1^ζΩ+1^ζΩ+1^ζΩ+1^ζΩ+1)). 

 

 [1 [1 [2  [2 \1,1,2 2]1,3  2] 2] 2]  has level  θ(ε(ε(ζΩ+1+1))) ([2 \1,1,2 2]1,n = [1 [2 \1,1,2 2]1,n+1 2]), 

 [1 [1 [3  [2 \1,1,2 2]1,3  2] 2] 2]  has level  θ(ε(ε(ζΩ+1+2))), 

 [1 [1 [1  [2 \1,1,2 2]1,3  3] 2] 2]  has level  θ(ε(ε(ζΩ+12))), 

 [1 [1 [1  [2 \1,1,2 2]1,3  1  [2 \1,1,2 2]1,3  2] 2] 2]  has level  θ(ε(ε(ζΩ+1^2))), 

 [1 [1 [1 [1  [2 \1,1,2 2]2,3  3] 2] 2] 2]  has level  θ(ε(ε(ζΩ+1^ζΩ+1))), 

 [1 [1 [1 [1  [2 \1,1,2 2]2,3  1  [2 \1,1,2 2]2,3  2] 2] 2] 2]  has level  θ(ε(ε(ζΩ+1^ζΩ+1^ζΩ+1))), 

 [1 [1 [1 [1 [1  [2 \1,1,2 2]3,3  3] 2] 2] 2] 2]  has level  θ(ε(ε(ζΩ+1^ζΩ+1^ζΩ+1^ζΩ+1))), 

 [1 [1 [1 [2  [2 \1,1,2 2]1,4  2] 2] 2] 2]  has level  θ(ε(ε(ε(ζΩ+1+1)))), 

 [1 [1 [1 [1 [2  [2 \1,1,2 2]1,5  2] 2] 2] 2] 2]  has level  θ(ε(ε(ε(ε(ζΩ+1+1))))), 

 [1 [1 [1 [1 [1 [2  [2 \1,1,2 2]1,6  2] 2] 2] 2] 2] 2]  has level  θ(ε(ε(ε(ε(ε(ζΩ+1+1)))))). 

 

 [1 [3 \1,1,2 2] 2]  has level  θ(ζΩ+2), 

 [1 [4 \1,1,2 2] 2]  has level  θ(ζΩ+3), 

 [1 [1 \1,1,2 3] 2]  has level  θ(ζΩ2), 

 [1 [1 \1,1,2 1 \1,1,2 2] 2]  has level  θ(ζΩ^2), 

 [1 [1 [2 \2,1,2 2] 2] 2]  has level  θ(ζΩ^ω), 

 [1 [1 [1 \2,1,2 3] 2] 2]  has level  θ(ζΩ^Ω), 

 [1 [1 [1 \2,1,2 1 \2,1,2 2] 2] 2]  has level  θ(ζΩ^Ω^Ω), 

 [1 [1 [1 [1 \3,1,2 3] 2] 2] 2]  has level  θ(ζΩ^Ω^Ω^Ω), 

 [1 [1 [2 \1,2,2 2] 2] 2]  has level  θ(ζ(εΩ+1))   (\1,n,2 = [1 \1,n+1,2 2]), 

 [1 [1 [3 \1,2,2 2] 2] 2]  has level  θ(ζ(εΩ+2)), 

 [1 [1 [1 \1,2,2 3] 2] 2]  has level  θ(ζ(εΩ2)), 

 [1 [1 [1 \1,2,2 1 \1,2,2 2] 2] 2]  has level  θ(ζ(εΩ^2)), 

 [1 [1 [1 [1 \2,2,2 3] 2] 2] 2]  has level  θ(ζ(εΩ^Ω)), 

 [1 [1 [1 [1 \2,2,2 1 \2,2,2 2] 2] 2] 2]  has level  θ(ζ(εΩ^Ω^Ω)), 

 [1 [1 [1 [1 [1 \3,2,2 3] 2] 2] 2] 2]  has level  θ(ζ(εΩ^Ω^Ω^Ω)), 

 [1 [1 [1 [2 \1,3,2 2] 2] 2] 2]  has level  θ(ζ(ε(εΩ+1))), 

 [1 [1 [1 [1 [2 \1,4,2 2] 2] 2] 2] 2]  has level  θ(ζ(ε(ε(εΩ+1)))), 

 [1 [1 [1 [1 [1 [2 \1,5,2 2] 2] 2] 2] 2] 2]  has level  θ(ζ(ε(ε(ε(εΩ+1))))). 

 

 [1 [1 [2 \1,1,3 2] 2] 2]  has level  θ(ζ(ζΩ+1))   (\1,1,n = [1 \1,1,n+1 2]), 

 [1 [1 [3 \1,1,3 2] 2] 2]  has level  θ(ζ(ζΩ+2)), 

 [1 [1 [1 \1,1,3 3] 2] 2]  has level  θ(ζ(ζΩ2)), 

 [1 [1 [1 \1,1,3 1 \1,1,3 2] 2] 2]  has level  θ(ζ(ζΩ^2)), 

 [1 [1 [1 [1 \2,1,3 3] 2] 2] 2]  has level  θ(ζ(ζΩ^Ω)), 

 [1 [1 [1 [1 \2,1,3 1 \2,1,3 2] 2] 2] 2]  has level  θ(ζ(ζΩ^Ω^Ω)), 

 [1 [1 [1 [1 [1 \3,1,3 3] 2] 2] 2] 2]  has level  θ(ζ(ζΩ^Ω^Ω^Ω)), 

 [1 [1 [1 [2 \1,2,3 2] 2] 2] 2]  has level  θ(ζ(ζ(εΩ+1))), 

 [1 [1 [1 [3 \1,2,3 2] 2] 2] 2]  has level  θ(ζ(ζ(εΩ+2))), 

 [1 [1 [1 [1 \1,2,3 3] 2] 2] 2]  has level  θ(ζ(ζ(εΩ2))), 
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 [1 [1 [1 [1 \1,2,3 1 \1,2,3 2] 2] 2] 2]  has level  θ(ζ(ζ(εΩ^2))), 

 [1 [1 [1 [1 [1 \2,2,3 3] 2] 2] 2] 2]  has level  θ(ζ(ζ(εΩ^Ω))), 

 [1 [1 [1 [1 [1 \2,2,3 1 \2,2,3 2] 2] 2] 2] 2]  has level  θ(ζ(ζ(εΩ^Ω^Ω))), 

 [1 [1 [1 [1 [1 [1 \3,2,3 3] 2] 2] 2] 2] 2]  has level  θ(ζ(ζ(εΩ^Ω^Ω^Ω))), 

 [1 [1 [1 [1 [2 \1,3,3 2] 2] 2] 2] 2]  has level  θ(ζ(ζ(ε(εΩ+1)))), 

 [1 [1 [1 [1 [1 [2 \1,4,3 2] 2] 2] 2] 2] 2]  has level  θ(ζ(ζ(ε(ε(εΩ+1))))), 

 [1 [1 [1 [1 [1 [1 [2 \1,5,3 2] 2] 2] 2] 2] 2] 2]  has level  θ(ζ(ζ(ε(ε(ε(εΩ+1)))))), 

 [1 [1 [1 [2 \1,1,4 2] 2] 2] 2]  has level  θ(ζ(ζ(ζΩ+1))), 

 [1 [1 [1 [1 [2 \1,1,5 2] 2] 2] 2] 2]  has level  θ(ζ(ζ(ζ(ζΩ+1)))), 

 [1 [1 [1 [1 [1 [2 \1,1,6 2] 2] 2] 2] 2] 2]  has level  θ(ζ(ζ(ζ(ζ(ζΩ+1))))). 

The sequence of separators starting with the last three has limit ordinal θ(φ(3, Ω+1)). 

 

 [1 [2 \1,1,1,2 2] 2]  has level  θ(φ(3, Ω+1)). 

 

Replacing [2 \1,1,2 2] by [2 \1,1,1,2 2] in the list of separators on pages 15-16 entails changing each ζΩ+1 

in the associated ordinal levels to φ(3, Ω+1). For example, 

 [1  [2 \1,1,1,2 2]  3]  has level  θ(φ(3, Ω+1), 1), 

 [1  [2 \1,1,1,2 2]  1 \ 2]  has level  θ(φ(3, Ω+1)+1), 

 [1  [2 \1,1,1,2 2]  1  [2 \1,1,1,2 2]  2]  has level  θ(φ(3, Ω+1)2), 

 [1 [1  [2 \1,1,1,2 2]2  3] 2]  has level  θ(φ(3, Ω+1)^2), 

 [1 [1  [2 \1,1,1,2 2]2  1  [2 \1,1,1,2 2]2  2] 2]  has level  θ(φ(3, Ω+1)^φ(3, Ω+1)), 

 [1 [1 [1  [2 \1,1,1,2 2]3  3] 2] 2]  has level  θ(φ(3, Ω+1)^φ(3, Ω+1)^φ(3, Ω+1)), 

 [1 [2  [2 \1,1,1,2 2]1,2  2] 2]  has level  θ(ε(φ(3, Ω+1)+1)) ([2 \1,1,1,2 2] = [1 [2 \1,1,1,2 2]1,2 2]), 

 [1 [1 [2  [2 \1,1,1,2 2]1,3  2] 2] 2]  has level  θ(ε(ε(φ(3, Ω+1)+1))), 

 [1 [1 [1 [2  [2 \1,1,1,2 2]1,4  2] 2] 2] 2]  has level  θ(ε(ε(ε(φ(3, Ω+1)+1)))). 

 

By substituting [2 \1,1,1,2 2] for the backslash in the list of separators on pages 15-17, each of the 

associated levels would have the Ω in the ζ function replaced by φ(3, Ω+1). I find that 

 [1 [2  [2 \1,1,1,2 2]1,1,2  2] 2]  has level  θ(ζ(φ(3, Ω+1)+1)) ([2 \1,1,1,2 2] = [1 [2 \1,1,1,2 2]1,1,2 2]), 

 [1 [2  [2  [2 \1,1,1,2 2]1,1,2  2]1,2  2] 2]  has level  θ(ε(ζ(φ(3, Ω+1)+1)+1)), 

 [1 [1 [2  [2  [2 \1,1,1,2 2]1,1,2  2]1,3  2] 2] 2]  has level  θ(ε(ε(ζ(φ(3, Ω+1)+1)+1))), 

 [1 [3  [2 \1,1,1,2 2]1,1,2  2] 2]  has level  θ(ζ(φ(3, Ω+1)+2)), 

 [1 [1  [2 \1,1,1,2 2]1,1,2  3] 2]  has level  θ(ζ(φ(3, Ω+1)2)), 

 [1 [1  [2 \1,1,1,2 2]1,1,2  1  [2 \1,1,1,2 2]1,1,2  2] 2]  has level  θ(ζ(φ(3, Ω+1)^2)), 

 [1 [1 [1  [2 \1,1,1,2 2]2,1,2  3] 2] 2]  has level  θ(ζ(φ(3, Ω+1)^φ(3, Ω+1))), 

 [1 [1 [2  [2 \1,1,1,2 2]1,2,2  2] 2] 2]  has level  θ(ζ(ε(φ(3, Ω+1)+1))), 

 [1 [1 [1 [2  [2 \1,1,1,2 2]1,3,2  2] 2] 2] 2]  has level  θ(ζ(ε(ε(φ(3, Ω+1)+1)))), 

 [1 [1 [2  [2 \1,1,1,2 2]1,1,3  2] 2] 2]  has level  θ(ζ(ζ(φ(3, Ω+1)+1))), 

 [1 [1 [1 [2  [2 \1,1,1,2 2]1,1,4  2] 2] 2] 2]  has level  θ(ζ(ζ(ζ(φ(3, Ω+1)+1)))). 

 

It follows that 

 [1 [3 \1,1,1,2 2] 2]  has level  θ(φ(3, Ω+2)), 

 [1 [1 \1,1,1,2 3] 2]  has level  θ(φ(3, Ω2)), 

 [1 [1 \1,1,1,2 1 \1,1,1,2 2] 2]  has level  θ(φ(3, Ω^2)), 

 [1 [1 [1 \2,1,1,2 3] 2] 2]  has level  θ(φ(3, Ω^Ω)), 

 [1 [1 [2 \1,2,1,2 2] 2] 2]  has level  θ(φ(3, εΩ+1))  (\1,n,1,2 = [1 \1,n+1,1,2 2]), 

 [1 [1 [1 [2 \1,3,1,2 2] 2] 2] 2]  has level  θ(φ(3, ε(εΩ+1))), 

 [1 [1 [2 \1,1,2,2 2] 2] 2]  has level  θ(φ(3, ζΩ+1))  (\1,1,n,2 = [1 \1,1,n+1,2 2]), 

 [1 [1 [1 [2 \1,1,3,2 2] 2] 2] 2]  has level  θ(φ(3, ζ(ζΩ+1))), 
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 [1 [1 [2 \1,1,1,3 2] 2] 2]  has level  θ(φ(3, φ(3, Ω+1))) (\1,1,1,n = [1 \1,1,1,n+1 2]), 

 [1 [1 [1 [2 \1,1,1,4 2] 2] 2] 2]  has level  θ(φ(3, φ(3, φ(3, Ω+1)))), 

 [1 [1 [1 [1 [2 \1,1,1,5 2] 2] 2] 2] 2]  has level  θ(φ(3, φ(3, φ(3, φ(3, Ω+1))))). 

The sequence of separators starting with the last three has limit ordinal θ(φ(4, Ω+1)). 

 

 [1 [2 \1,1,1,1,2 2] 2]  has level  θ(φ(4, Ω+1)), 

 [1 [2 \1,1,1,1,1,2 2] 2]  has level  θ(φ(5, Ω+1)), 

 [1 [2 \1,1,...,1,2 2] 2]  (with n 1’s)  has level  θ(φ(n, Ω+1)). 

The limit ordinal of this backslash subscript notation is θ(φ(ω, Ω+1)). 

 

In general, with k+1 subscripts and n1+n2+...+nk+1-k pairs of square brackets (nk ≥ 2), 

 [S] = [1 [1 [1 [ ... [1 [2 \1,n1,n2,...,nk 2] 2] ... ] 2] 2] 2] 

  has level  θ(φ(k, φ(k, ... , φ(k, φ(k-1, φ(k-1, ... , φ(k-1, ...... ζ(ζ(...ζ( ε(ε(...ε(εΩ+1)......)) 

     (with nk-1 φ(k’s, nk-1-1 φ(k-1’s, ... , n2-1 ζ’s and n1-1 ε’s). 

 

Suppose that X is a character string such that [X] is either a single entry array or contains only normal 

separators in its ‘base layer’, and has level α – for example, if X = ‘m’ then α = m-1, if X = ‘1 [1 \ m] 2’ 

then α = εm-2. If the first 1 of [S] is replaced by X, we would add α to its ordinal level. If the nth 1 of [S] 

(2 ≤ n ≤ n1+n2+...+nk-k) is replaced by X, its ordinal level would have α added inside the nth outermost 

layer of brackets, i.e. the ordinal level would be as above but end in ‘Ω+1)...))+α)...))’, with n )’s after 

‘+α’. If the 2 to the left of the backslash in the top layer of [S] is replaced by X ≠ ‘1’, the Ω+1 in the 

innermost layer of brackets of the ordinal would become Ω+α. 

 

On the other hand, if the rightmost 2 of [S] is replaced by X ≠ ‘1’, the θ function of the ordinal level 

would have a second argument of α-1 (α < ω) or α (α ≥ ω) instead of 0 (representing the αth ‘fixed 

point’). If the nth rightmost 2 of [S] (2 ≤ n ≤ n1+n2+...+nk-k) is replaced by X ≠ ‘1’, the ordinal inside the 

nth outermost layer of brackets of the ordinal level would be multiplied by α, i.e. the ordinal level 

would be as above but end in ‘Ω+1)...))α)...))’, with n )’s after ‘α’. If the 2 to the right of the backslash 

and subscripts in the top layer of [S] is replaced by X ≠ ‘1’, the Ω+1 in the innermost layer of the 

ordinal would become Ωα. 

 

If the  [2 \1,n1,n2,...,nk 2]  at the top layer of [S] is replaced by 

 [1 [1 [1 [ ... [1 [1 \m,n1,n2,...,nk 3] 2] ... ] 2] 2] 2]  (m pairs of square brackets, m ≥ 2), 

the Ω+1 in the innermost layer of brackets of the associated ordinal level would become Ω^^(2m-2) or 

a power tower of 2m-2 Ω’s. If the  [2 \1,n1,n2,...,nk 2]  is replaced by 

 [1 [1 [ ... [1 [1 \m,n1,n2,...,nk 1 \m,n1,n2,...,nk 2] 2] ... ] 2] 2] (m pairs of square brackets, m ≥ 2), 

the Ω+1 would become Ω^^(2m-1) or a power tower of 2m-1 Ω’s. The limit ordinal substitutes εΩ+1 for 

Ω+1, which is achieved by adding 1 to n1 or replacing  [2 \1,n1,n2,...,nk 2]  with  [1 [2 \1,n1+1,n2,...,nk 2] 2]. 

 

The recursive definition of an (n1, n2, n3, ... , nk)-hyperseparator (for k ≥ 1, n1 ≥ 1, ni ≥ 1 (1 ≤ i < k) and 

nk ≥ 2 (k ≥ 2)) is that one of the following four conditions hold: 

1. It is the \n1,n2,n3,...,nk symbol. 

2. Contains at least one (n1+1, n2, n3, ... , nk)-hyperseparator in its ‘base layer’. 

3. Subscripted by n1,n2,n3,...,ni and contains at least one (1, 1, ... , 1, ni+1+1, ni+2, ni+3, ... , nk)- 

hyperseparator (with i 1’s) in its ‘base layer’, for some 1 ≤ i < k. (When i = k-1, the hyperseparator 

level expression would read (1, 1, ... , 1, nk+1)-hyperseparator (with k-1 1’s).) 

4. Subscripted by n1,n2,n3,...,nk and contains at least one (1, 1, 1, ... , 1, 2)-hyperseparator (with at 

least k 1’s) in its ‘base layer’. 
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In order to find the minimum number of square brackets around an (n1, n2, n3, ... , nk)-hyperseparator 

necessary to turn it into a normal separator, take the sum of the ni’s (when reduced by 1), then add 1. 

This is n1+n2+n3+...+nk+1-k pairs of square brackets. In the case of a backslash with subscript array, 

take the sum of the subscripts (when reduced by 1), then add 1. 

 

Suppose that M and N are arrays. An M-hyperseparator cannot be on the same ‘nested level’ as an 

N-hyperseparator unless both hyperseparators are of the same level (M = N) or one (or both) 

separators are either normal or 1-hyperseparators (either M = ‘0’, M = ‘1’, N = ‘0’ or N = ‘1’). 

 

Rules A5b and A5b* are modified as follows:- 

 

The backslash in Rule A5b is now the generalised \m1,m2,...,mq symbol, where q ≥ 1 and mq ≥ 2. The \ j 

in the Rn,j-1 equation is replaced by \m1,m2,...,mq. (Here, the number of subscripts is q, as i, j, k, n and p 

are already used.) 

 

Rule A5b* (separator  [Ai,j(pi,j)] = [d #S]m1,m2,...,mk,  where d ≥ 2, k ≥ 1 and #S contains at least one 

(1, 1, ... , 1, r1, r2, ...)-hyperseparator (with k 1’s) in its base layer, where r1 ≥ 2): 

 Si,j = ‘b ‹Ai,j(1)’› b [Ai,j(1)] b ‹Ai,j(2)’› b [Ai,j(2)] ... b ‹Ai,j(pi,j-1)’› b [Ai,j(pi,j-1)] 

          Rb  [d #S]m1,m2,...,mk  ci,j-1 #i,j’, 

 Rn = ‘b ‹Rn-1› b’, 

 R1 = ‘b  [d-1 #S]1,1,...,1,mk+b-1  b’  (with k-1 1’s in subscript). 

 

In the above subrule, any of the mi for 1 ≤ i ≤ k and ri for i ≥ 2 may take the value 1. Subscripts and 

hyperseparator levels are written with trailing 1’s removed. For example, if nk ≥ 2 but ni = 1 for all 

i > k, then  \n1,n2,... = \n1,n2,...,nk,  [X]n1,n2,... = [X]n1,n2,...,nk  and  ‹X›n1,n2,... = ‹X›n1,n2,...,nk  for a string X, and 

an (n1, n2, ...)-hyperseparator would be an (n1, n2, ... , nk)-hyperseparator. If ni = 1 for all i, then 

\n1,n2,... = \,  [X]n1,n2,... = [X]  and  ‹X›n1,n2,... = ‹X›  for a string X, and an (n1, n2, ...)-hyperseparator would 

be a 1-hyperseparator. 

 

Note that Rule A5b* with the lowest (1, 1, ... , 1, r1, r2, ...)-hyperseparator (with k 1’s) within #S, 

 [Ai,j(pi,j)] = [2 \1,1,...,1,r1,r2,... 2]m1,m2,...,mk  (with k 1’s inside brackets) 

would mean that 

 R1 = ‘b  [1 \1,1,...,1,r1,r2,... 2]1,1,...,1,mk+b-1  b’  (k 1’s inside and k-1 1’s outside brackets) 

      = ‘b  \1,1,...,1,mk+b-1,r1-1,r2,...  b’   (with k-1 1’s after backslash). 

By setting mk = 1, we obtain 

 R1 = ‘b  \1,1,...,1,b,r1-1,r2,...  b’, 

which is how the (k+1)th subscript of the backslash symbol is reduced by 1. (The kth subscript 

becomes b; all other subscripts remain unchanged.) 

 

In Rule A5b, the road from Rn,1 to Rn-1,1 is split up into many parts, via layers of separators. This 

begins with the i-hyperseparators (i = 2, 3, 4, ...), (i, 2)-hyperseparators, (i, 3)-hyperseparators etc., 

then the (i, 1, 2)-hyperseparators, (i, 2, 2)-hyperseparators etc., then levels (i, 1, 3), (i, 2, 3) etc., 

(i, 1, 4), (i, 2, 4) etc., etc., then the 4-entry array levels starting with the (1, 1, 1, 2)-hyperseparators, 

then the 5-entry array levels, and so on, right up to the final layer of (m1, m2, ... , mq)-hyperseparators 

and 1-hyperseparators, with the latter set sandwiched in between the penultimate (m1, m2, ... , mq)- 

hyperseparator and the \m1,m2,...,mq symbol. In each case where the array level of the set of 

hyperseparators begins with 1, this is through a separator carrying a potential subscript – for example, 

the set of (1, 1, ... , 1, r1, r2, ...)-hyperseparators (with k 1’s, for some k ≥ 1, r1 ≥ 2, ri ≥ 1 for each i ≥ 2) 
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is immediately via a separator with an n1,n2,...,nk subscript (for some ni ≥ 1 for each 1 ≤ i ≤ k, unless 

every ni = 1). 

 

Separators with subscript arrays give rise to angle brackets with them too. When N = ‘n1, n2, ... , np’ for 

some p ≥ 1, 

 ‘3 ‹k #›N 3’ = ‘3 ‹k-1 #›N 3 [k #]N 3 ‹k-1 #›N 3 [k #]N 3 ‹k-1 #›N 3’ (k ≥ 1), 

 ‘a ‹0 [m #*] k #›N b’ = ‘a ‹b ‹m-1 #*› b [m #*] k-1 #›N b’  (k ≥ 2), 

where #* does not begin with a 2- or higher hyperseparator when m = 1. For the purposes of Rules A2 

and A5 (initial part), a ‘2- or higher order hyperseparator’ includes all (n1, n2, ... , nk)-hyperseparators, 

where nk ≥ 2. The N can be treated as the rightmost part of the main separator and angle bracket 

arrays (separated by a ‘superhyperseparator’) in the Angle Bracket Rules. 

 

Subscript arrays can themselves be extended into multidimensional arrays, nested arrays or even as 

advanced as ordinary separator arrays can go. The single backslash without any subscripts is now 

equivalent to 

 [1 \1 [2] 2 2] = [1 \1 [2] 1,2 2] = [1 \1 [2] 1,1,2 2] = ... , 

 [1 \1 [2] 1 [2] 2 2] = [1 \1 [2] 1 [2] 1,2 2] = [1 \1 [2] 1 [2] 1,1,2 2] = ... , 

 [1 \1 [2] 1 [2] 1 [2] 2 2] = [1 \1 [2] 1 [2] 1 [2] 1 [2] 2 2] = [1 \1 [2] 1 [2] 1 [2] 1 [2] 1 [2] 2 2] = ... , 

 [1 \1 [3] 2 2] = [1 \1 [3] 1,2 2] = ... = [1 \1 [3] 1 [2] 2 2] = [1 \1 [3] 1 [2] 1,2 2] = ... , 

 [1 \1 [3] 1 [3] 2 2] = [1 \1 [3] 1 [3] 1 [3] 2 2] = [1 \1 [3] 1 [3] 1 [3] 1 [3] 2 2] = ... , 

 [1 \1 [4] 2 2] = [1 \1 [5] 2 2] = [1 \1 [6] 2 2] = ... , 

 [1 \1 [1,2] 2 2] = [1 \1 [1 [2] 2] 2 2] = [1 \1 [1 [1,2] 2] 2 2] = ... , 

 [1 \1 [1 \ 2] 2 2] = [1 \1 [1 \ 3] 2 2] = [1 \1 [1 \ 4] 2 2] = ... , 

 [1 \1 [1 \ 1 \ 2] 2 2] = [1 \1 [1 [1 \2 3] 2] 2 2] = [1 \1 [1 [1 \2 1 \2 2] 2] 2 2] = [1 \1 [1 [1 [1 \3 3] 2] 2] 2 2] = ... , 

 [1 \1 [1 [2 \1,2 2] 2] 2 2] = [1 \1 [1 [2 \1,1,2 2] 2] 2 2] = [1 \1 [1 [2 \1,1,1,2 2] 2] 2 2] = ... , 

 [1 \S1 2] = [1 \S2 2] = [1 \S3 2] = ... 

  (with  S1 = ‘1 [1 [2 \1,2 2] 2] 2’  and  Sn+1 = ‘1 [1 [2 \Sn 2] 2] 2’). 

In fact, 

 \ = [1 \1 [A1] 1 [A2] ... 1 [Ak] 2 2], 

in all cases where each [Ai] is a normal separator. A subscript array, like a main array (in curly 

brackets), can only contain normal separators in its ‘base layer’. 

 

An (n1 [A1] n2 [A2] ... nk [Ak] nk+1)-hyperseparator (the lowest of which is the \n1 [A1] n2 [A2] ... nk [Ak] nk+1 

symbol), where each [Ai] is a normal separator, requires a minimum of n1+n2+...+nk+1-k pairs of square 

brackets in order to turn it into a normal separator. This holds true when every [Ai] = [1] (comma). 

 

The generalised backslash subscript array (for normal separators [Ai]) 

 \n1 [A1] n2 [A2] ... nk [Ak] nk+1 

    = [1 \n1+1 [A1] n2 [A2] n3 [A3] n4 [A4] ... nk [Ak] nk+1 2] 

    = [1 \1 [A1] n2+1 [A2] n3 [A3] n4 [A4] ... nk [Ak] nk+1 2]n1 

    = [1 \1 [A1] 1 [A2] n3+1 [A3] n4 [A4] ... nk [Ak] nk+1 2]n1 [A1] n2 

    = ...... 

    = [1 \1 [A1] 1 [A2] ... 1 [Ak] nk+1+1 2]n1 [A1] n2 [A2] ... nk-1 [Ak-1] nk 

    = [1 \S [A1] n2 [A2] n3 [A3] n4 [A4] ... nk [Ak] nk+1 2]n1   ([B1] < [A1]) 

    = [1 \1 [A1] S [A2] n3 [A3] n4 [A4]... nk [Ak] nk+1 2]n1 [A1] n2   ([B1] < [A2]) 

    = [1 \1 [A1] 1 [A2] S [A3] n4 [A4]... nk [Ak] nk+1 2]n1 [A1] n2 [A2] n3  ([B1] < [A3]) 

    = ...... 

    = [1 \1 [A1] 1 [A2] ... 1 [Ak-1] S [Ak] nk+1 2]n1 [A1] n2 [A2] ... nk-1 [Ak-1] nk  ([B1] < [Ak]) 

    = [1 \1 [A1] 1 [A2] ... 1 [Ak] S 2]n1 [A1] n2 [A2] ... nk [Ak] nk+1, 
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where S = ‘1 [B1] 1 [B2] ... 1 [Bm] 2’    (m ≥ 1, [Bi] are normal separators). 

The backslash itself in the above equalities (other than the last one) may be substituted by a 

separator array that contains at least one (1 [A1] 1 [A2] ... 1 [Ak] 1 #)-hyperseparator (with # 

non-empty, containing at least one entry of 2 or greater) in its ‘base layer’, for example, 

 [X \1 [A1] 1 [A2] ... 1 [Ak] 1,m Y]n1 [A1] n2 [A2] ... nk [Ak] nk+1 

    = [1  [X \1 [A1] 1 [A2] ... 1 [Ak] 1,m Y]1 [A1] 1 [A2] n3+1 [A3] n4 [A4] ... nk [Ak] nk+1  2]n1 [A1] n2 

  (with m ≥ 2; X and Y are strings either side of \1 [A1] 1 [A2] ... 1 [Ak] 1,m). 

 

The θ(φ(ω, Ω+1)) level separator 

 {a, b [1 [2 \1 [2] 2 2] 2] 2} = {a ‹0 [2 \1 [2] 2 2] 2› b} 

                                      = {a ‹b ‹b ‹ ... ‹b ‹b \1,1,...,1,b b› b› ... › b› b› b} 

     (with b pairs of angle brackets and b-1 1’s in \1,1,...,1,b). 

This is equivalent to 

 {a, b  [1 [2 \1,1,1,...,1,2 2] 2] 2} (with b 1’s in \1,1,1,...,1,2). 

 

With k 1’s in the subscript, 

 {a, b [1 [1 [2 \1,1,1,...,1,2 [2] 2 2] 2] 2] 2} = {a ‹0 [1 [2 \1,1,1,...,1,2 [2] 2 2] 2] 2› b} 

                                                        = {a ‹b ‹b ‹ ... ‹b ‹b \1,1,...,1,b [2] 2 b› b› ... › b› b› b} 

     (with b+1 pairs of angle brackets and k-1 1’s in 1,1,...,1,b), 

 {a, b [1 [2 \1 [2] 1,1,1,...,1,2 2] 2] 2} = {a ‹0 [2 \1 [2] 1,1,1,...,1,2 2] 2› b} 

                                                = {a ‹b ‹b ‹ ... ‹b ‹b \1 [2] 1,1,...,1,b b› b› ... › b› b› b} 

     (with b pairs of angle brackets and k-1 1’s in 1,1,...,1,b). 

If there was a chain of 1’s and [2]’s prior to the 1,1,1,...,1,2 in the subscripts of the above two arrays, this 

chain would remain unchanged prior to the 1,1,...,1,b in the subscripts on the right-hand side. 

 

When X is a subscript array beginning with 1 and containing at least one entry of 2 or greater, and n is 

one more than the sum of all the entries in the ‘base layer’ of X (when reduced by 1), 

 {a, b [1 [1 [1 ... [1 [c \X 2] 2] ... 2] 2] 2] 2}  (with n pairs of square brackets) 

    = {a ‹0 [1 [1 ... [1 [c \X 2] 2] ... 2] 2] 2› b} 

    = {a ‹b ‹b ‹ ... ‹b ‹b [c-1 \X 2]Y b› b› ... › b› b› b} (with n+b-2 pairs of angle brackets), 

for some other subscript array Y (where [X] > [Y]). If c = 2, the separator [1 \X 2]Y ‘drops down’ to \Z 

(where Z is another subscript array) since the first non-1 entry in X is beyond the entry corresponding 

to the final non-1 entry in Y. Z would inherit all the entries and separators of Y plus the entries and 

separators of X from the first separator in X that has no counterpart in Y, onwards (with the first non-1 

entry of X reduced by 1). This implies that Y and Z would be identical when X contains a single non-1 

entry of 2. 

 

I find that 

 [1  [2 \1 [2] 2 2]  2]  has level  θ(φ(ω, Ω+1)), 

 [1  [2 \1 [2] 2 2]  3]  has level  θ(φ(ω, Ω+1), 1), 

 [1  [2 \1 [2] 2 2]  1 \ 2]  has level  θ(φ(ω, Ω+1)+1), 

 [1  [2 \1 [2] 2 2]  1  [2 \1 [2] 2 2]  2]  has level  θ(φ(ω, Ω+1)2), 

 [1 [1  [2 \1 [2] 2 2]2  3] 2]  has level  θ(φ(ω, Ω+1)^2), 

 [1 [1  [2 \1 [2] 2 2]2  1  [2 \1 [2] 2 2]2  2] 2]  has level  θ(φ(ω, Ω+1)^φ(ω, Ω+1)), 

 [1 [1 [1  [2 \1 [2] 2 2]3  3] 2] 2]  has level  θ(φ(ω, Ω+1)^φ(ω, Ω+1)^φ(ω, Ω+1)), 

 [1 [2  [2 \1 [2] 2 2]1,2  2] 2]  has level  θ(ε(φ(ω, Ω+1)+1)) ([2 \1 [2] 2 2] = [1 [2 \1 [2] 2 2]1,2 2]), 

 [1 [1 [2  [2 \1 [2] 2 2]1,3  2] 2] 2]  has level  θ(ε(ε(φ(ω, Ω+1)+1))), 

 [1 [1 [1 [2  [2 \1 [2] 2 2]1,4  2] 2] 2] 2]  has level  θ(ε(ε(ε(φ(ω, Ω+1)+1)))). 
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Since  [2 \1 [2] 2 2] = [1 [2 \1 [2] 2 2]1,1,...,1,2 2],  for any finite number of 1’s in 1,1,...,1,2, 

 [1 [2  [2 \1 [2] 2 2]1,1,2  2] 2]  has level  θ(ζ(φ(ω, Ω+1)+1)), 

 [1 [2  [2 \1 [2] 2 2]1,1,...,1,2  2] 2]  (with n 1’s in 1,1,...,1,2)  has level  θ(φ(n, φ(ω, Ω+1)+1)), 

and as  φ(n, φ(ω, α)+1)  has limit ordinal  φ(ω, α+1)  as n → ω, it follows that 

 [1 [3 \1 [2] 2 2] 2]  has level  θ(φ(ω, Ω+2)), 

 [1 [4 \1 [2] 2 2] 2]  has level  θ(φ(ω, Ω+3)), 

 [1 [1 \1 [2] 2 3] 2]  has level  θ(φ(ω, Ω2)), 

 [1 [1 \1 [2] 2 1 \1 [2] 2 2] 2]  has level  θ(φ(ω, Ω^2)), 

 [1 [1 [1 \2 [2] 2 3] 2] 2]  has level  θ(φ(ω, Ω^Ω))   (\n [2] 2 = [1 \n+1 [2] 2 2]), 

 [1 [1 [2 \1,2 [2] 2 2] 2] 2]  has level  θ(φ(ω, εΩ+1))  (\1,n [2] 2 = [1 \1,n+1 [2] 2 2]), 

 [1 [1 [1 [2 \1,3 [2] 2 2] 2] 2] 2]  has level  θ(φ(ω, ε(εΩ+1))), 

 [1 [1 [2 \1,1,2 [2] 2 2] 2] 2]  has level  θ(φ(ω, ζΩ+1))  (\1,1,n [2] 2 = [1 \1,1,n+1 [2] 2 2]), 

 [1 [1 [2 \1,1,...,1,2 [2] 2 2] 2] 2]  (with n 1’s in 1,1,...,1,2)  has level  θ(φ(ω, φ(n, Ω+1))), 

 [1 [1 [2 \1 [2] 3 2] 2] 2]  has level  θ(φ(ω, φ(ω, Ω+1)))  (\1 [2] n = [1 \1 [2] n+1 2]), 

 [1 [1 [1 [2 \1 [2] 4 2] 2] 2] 2]  has level  θ(φ(ω, φ(ω, φ(ω, Ω+1)))), 

 [1 [2 \1 [2] 1,2 2] 2]  has level  θ(φ(ω+1, Ω+1)), 

 [1 [2 \1 [2] 1,1,...,1,2 2] 2]  (with n 1’s in 1,1,...,1,2)  has level  θ(φ(ω+n, Ω+1)), 

 [1 [2 \1 [2] 1 [2] 2 2] 2]  has level  θ(φ(ω2, Ω+1)), 

 [1 [2 \1 [2] 1 [2] 1 [2] 2 2] 2]  has level  θ(φ(ω3, Ω+1)), 

 [1 [2 \1 [2] 1 [2] ... 1 [2] 2 2] 2]  (with n [2]’s)  has level  θ(φ(ωn, Ω+1)). 

 

The most significant higher separators are as follows:- 

 [1 [2 \1 [3] 2 2] 2]  has level  θ(φ(ω^2, Ω+1)), 

 [1 [2 \1 [4] 2 2] 2]  has level  θ(φ(ω^3, Ω+1)), 

 [1 [2 \1 [1,2] 2 2] 2]  has level  θ(φ(ω^ω, Ω+1)), 

 [1 [2 \1 [1 [2] 2] 2 2] 2]  has level  θ(φ(ω^ω^ω, Ω+1)), 

 [1 [2 \1 [1 [1,2] 2] 2 2] 2]  has level  θ(φ(ω^ω^ω^ω, Ω+1)), 

 [1 [2 \1 [1 \ 2] 2 2] 2]  has level  θ(φ(ε0, Ω+1)), 

 [1 [2 \1 [1 \ 3] 2 2] 2]  has level  θ(φ(ε1, Ω+1)), 

 [1 [2 \1 [1 \ 1 \ 2] 2 2] 2]  has level  θ(φ(ζ0, Ω+1)), 

 [1 [2 \1 [1 \ 1 \ 1 \ 2] 2 2] 2]  has level  θ(φ(φ(3, 0), Ω+1)), 

 [1 [2 \1 [1 [2 \2 2] 2] 2 2] 2]  has level  θ(φ(φ(ω, 0), Ω+1)), 

 [1 [2 \1 [1 [1 \2 3] 2] 2 2] 2]  has level  θ(φ(Γ0, Ω+1)), 

 [1 [2 \1 [1 [1 \2 1 \2 2] 2] 2 2] 2]  has level  θ(φ(θ(Ω^Ω), Ω+1)), 

 [1 [2 \1 [1 [1 [1 \3 3] 2] 2] 2 2] 2]  has level  θ(φ(θ(Ω^Ω^Ω), Ω+1)), 

 [1 [2 \1 [1 [2 \1,2 2] 2] 2 2] 2]  has level  θ(φ(θ(εΩ+1), Ω+1)), 

 [1 [2 \1 [1 [2 \1,1,2 2] 2] 2 2] 2]  has level  θ(φ(θ(ζΩ+1), Ω+1)), 

 [1 [2 \1 [1 [2 \1 [2] 2 2] 2] 2 2] 2]  has level  θ(φ(θ(φ(ω, Ω+1)), Ω+1)), 

 [1 [2 \1 [1 [2 \1 [1 \ 2] 2 2] 2] 2 2] 2]  has level  θ(φ(θ(φ(ε0, Ω+1)), Ω+1)). 

 

Taking  S1 = ‘1 [1 [2 \1,2 2] 2] 2’  and  Sn+1 = ‘1 [1 [2 \Sn 2] 2] 2’, 

 [1 [2 \S1 2] 2]  has level  θ(φ(θ(εΩ+1), Ω+1)), 

 [1 [2 \S2 2] 2]  has level  θ(φ(θ(φ(θ(εΩ+1), Ω+1)), Ω+1)), 

 [1 [2 \S3 2] 2]  has level  θ(φ(θ(φ(θ(φ(θ(εΩ+1), Ω+1)), Ω+1)), Ω+1)). 

The limit ordinal of the Sn sequence, and the nested backslash subscript array notation – which I will 

call the Nested Subscript Array Notation – is θ(φ(Ω, 1)). This is due to the fact that φ(Ω, 1) is the limit 

of  φ(α, Ω+1) = φ(α, φ(Ω, 0)+1)  as α → Ω. 
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A second (more powerful) ordinal collapsing function (θ1) can be used within the θ function in order to 

represent the ordinals above the Bachmann-Howard ordinal. It works as follows: 

 θ1(0, α) = Ω^α, 

 θ1(1, α) = εΩ+1+α, 

 θ1(2, α) = ζΩ+1+α, 

 θ1(α) = θ1(α, 0), 

 θ1(α, β) = φ(α, Ω+1+β)    (1 ≤ α < Ω) 

              = φ(α, 1+β)    (α = Ω) 

              = φ(α, β)    (Ω < α < Ω2), 

 θ1(α+1) = θ1(α, θ1(α, θ1(α, ... θ1(α)...)))  (with ω θ1’s), 

 θ1(Ω) = φ(Ω, 1) = θ1(θ(θ1(θ(θ1(...θ(θ1(0))...))))) (with ω θ1’s), 

 θ1(Ω2) = ΓΩ+1 = θ1(θ1(θ1(...θ1(0)...)))  (with ω θ1’s), 

 θ(θ1(α, β)) = θ(α, β)    (α ≥ Ω2), 

where Ω2 denotes the second uncountable ordinal. (Ω = Ω1 is the first uncountable ordinal.) We can 

define higher collapsing functions (θn) and create higher uncountable ordinals (Ωn+1) by analogy with 

θ1 and Ω2 above, for example, 

 θn(0, α) = Ωn^α, 

 θn(α) = θn(α, 0), 

 θn(α, β) = φ(α, Ωn+1+β)    (1 ≤ α < Ωn) 

              = φ(α, 1+β)    (α = Ωn) 

              = φ(α, β)    (Ωn < α < Ωn+1), 

 θn(α+1) = θn(α, θn(α, θn(α, ... θ1(α)...)))  (with ω θn’s), 

 θn(Ω) = θn(θ(θn(θ(θn(...θ(θn(0))...)))))  (with ω θn’s), 

 θn(Ωk+1) = θn(θk(θn(θk(θn(...θk(θn(0))...)))))  (with ω θn’s, k ≤ n), 

 θn(Ωn+1) = θn(θn(θn(...θn(0)...)))   (with ω θn’s), 

 θ(θn(α, β)) = θ(α, β)    (α ≥ Ωn+1), 

 θk(θn(α, β)) = θk(α, β)    (α ≥ Ωn+1, k < n). 

We can extend this to θα functions and Ωα uncountable ordinals for transfinite α. θ(Ωω) is a special 

ordinal since it is the proof theoretic ordinal of the subsystem Π
1
1-CA0 of second-order arithmetic. 

There is a whole new universe of ordinals that are far greater than the first fixed point of α = Ωα within 

the θ function. 

 

An alternative (single-argument) ordinal collapsing function (ψ) works as follows: 

 ψ(α) = εα   (α < Ω), 

 ψ(α+1) = ψ(α)^^ω  (power tower of ψ(α)’s of height ω), 

 ψ((Ω^α)β) = φ(1+α, β-1)  (1 ≤ α < Ω, 1 ≤ β < ω) 

                  = φ(1+α, β)  (1 ≤ α < Ω, ω ≤ β < Ω) 

                  = θ(1+α, β-1)  (α ≥ 1, 1 ≤ β < ω) 

                  = θ(1+α, β)  (α ≥ 1, ω ≤ β < Ω). 

 

Like the θ1 function (within θ), we can define the ψ1 function (within ψ) in order to proceed beyond the 

Bachmann-Howard ordinal. It works as follows: 

 ψ1(α) = εΩ+1+α   (α < Ω2), 

 ψ1(α+1) = ψ1(α)^^ω  (power tower of ψ1(α)’s of height ω), 

 ψ1((Ω2^α)β) = φ(1+α, Ω+β) (1 ≤ α < Ω, 1 ≤ β < Ω2) 

                    = φ(α, β-1)  (Ω < α < Ω2, 1 ≤ β < ω) 

                    = φ(α, β)  (Ω < α < Ω2, ω ≤ β < Ω2 or α = Ω, 1 ≤ β < Ω2) 

                    = θ1(1+α, β-1) (α ≥ 1, 1 ≤ β < ω) 

                    = θ1(1+α, β)  (α ≥ 1, ω ≤ β < Ω2). 
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This can be extended further by defining higher ψα functions which are comparable with the θα 

functions. I prefer to use the θ system of collapsing functions since these begin with the finite 

numbers (rather than ε0) and it is more closely related to the Veblen function. Also, a power tower of 

Ω’s within the θ function contains one fewer Ω than the equivalent power tower of Ω’s within the ψ 

function. 

 

The ordinal θ(φ(Ω, 1)) = θ(θ1(Ω)) = ψ1(Ω2^Ω), using the θ1 and ψ1 functions as defined above. 

 

The θ(φ(ω^2, Ω+1)) level separator 

 {a, b [1 [2 \1 [3] 2 2] 2] 2} = {a ‹0 [2 \1 [3] 2 2] 2› b} 

                                      = {a ‹b ‹b ‹ ... ‹b ‹b \1 ‹2› b (←b) b› b› ... › b› b› b} 

     (with b pairs of angle brackets outside subscript), 

where the (←b) means replace the final entry by b. Since 

 ‘1 ‹2› b (←b)’ = ‘1 ‹1› b [2] 1 ‹1› b [2] ... 1 ‹1› b [2] 1 ‹1› b (←b)’ (with b-1 [2]’s) 

                       = ‘1,1,..,1 [2] 1,1,..,1 [2] .... 1,1,..,1 [2] 1,1,..,1,b’ (b-1 1’s after final [2]) 

                       = ‘1 [2] 1 [2] ... 1 [2] 1,1,...,1,b’   (remove trailing 1’s), 

it follows that 

 {a, b [1 [2 \1 [3] 2 2] 2] 2} = {a ‹b ‹b ‹ ... ‹b ‹b \1 [2] 1 [2] ... 1 [2] 1,1,...,1,b b› b› ... › b› b› b} 

     (b pairs of angle brackets, b-1 ‘1 [2]’s and b-1 1’s in 1,1,...,1,b). 

 

The following additions are made to Rule A1: 

 ‘a ‹0› b (←c)’ = ‘c’, 

 ‘a ‹1› b (←c)’ = ‘a, a, ... , a, c’   (with b-1 a’s). 

 

The following additions are made to Rule A2: 

 ‘a ‹0 #› b (←c)’ = ‘c’, 

 ‘a ‹1 #› b (←c)’ = ‘a [1 #] a [1 #] ... a [1 #] c’ (with b-1 a’s), 

where # begins with a 2- or higher order hyperseparator. 

 

The θ(φ(ω^ω, Ω+1)) level separator 

 {a, b [1 [2 \1 [1,2] 2 2] 2] 2} = {a ‹0 [2 \1 [1,2] 2 2] 2› b} 

                                        = {a ‹b ‹b ‹ ... ‹b ‹b \1 ‹0,2› b (←b) b› b› ... › b› b› b} 

                                        = {a ‹b ‹b ‹ ... ‹b ‹b \1 ‹b› b (←b) b› b› ... › b› b› b} 

     (with b pairs of angle brackets outside subscript), 

where ‘1 ‹b› b (←b)’ = ‘1 ‹b-1› b [b] 1 ‹b-1› b [b] ... 1 ‹b-1› b [b] 1 ‹b-1› b (←b)’ (with b-1 [b]’s) 

                       = ‘1 [b] 1 [b] ... 1 [b] 1 [b-1] 1 [b-1] ... 1 [b-1] ...... 1 [2] 1 [2] ... 1 [2] 1,1,...,1,b’ 

     (b-1 each of [b]’s, [b-1]’s, ... , [2]’s and b-1 1’s after final [2]). 

 

Examples of arrays with separators of higher levels are as follows:- 

 {a, b [1 [2 \1 [1 \ 2] 2 2] 2] 2} 

    = {a ‹0 [2 \1 [1 \ 2] 2 2] 2› b} 

    = {a ‹b ‹b ‹ ... ‹b ‹b \1 ‹0 \ 2› b (←b) b› b› ... › b› b› b} 

     (with b pairs of angle brackets outside subscript) 

    = {a ‹b ‹b ‹ ... ‹b ‹b \1 ‹b ‹b ‹ ... ‹b ‹b› b› ... › b› b› b (←b) b› b› ... › b› b› b} 

     (with b-1 pairs of angle brackets in subscript), 

 {a, b [1 [2 \1 [1 [1 \2 3] 2] 2 2] 2] 2} 

    = {a ‹0 [2 \1 [1 [1 \2 3] 2] 2 2] 2› b} 

    = {a ‹b ‹b ‹ ... ‹b ‹b \1 ‹0 [1 \2 3] 2› b (←b) b› b› ... › b› b› b} 

     (with b pairs of angle brackets outside subscript) 
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    = {a ‹b ‹b ‹ ... ‹b ‹b \1 ‹b ‹b ‹b ‹ ... ‹b ‹b \2 2› b \2 2› ... › b \2 2› b \2 2› b› b (←b) b› b› ... › b› b› b} 

     (with b pairs of angle brackets in subscript), 

 {a, b [1 [2 \1 [1 [2 \1,2 2] 2] 2 2] 2] 2} 

    = {a ‹0 [2 \1 [1 [2 \1,2 2] 2] 2 2] 2› b} 

    = {a ‹b ‹b ‹ ... ‹b ‹b \1 ‹0 [2 \1,2 2] 2› b (←b) b› b› ... › b› b› b} 

     (with b pairs of angle brackets outside subscript) 

    = {a ‹b ‹b ‹ ... ‹b ‹b \1 ‹b ‹b ‹ ... ‹b ‹b \b b› b› ... › b› b› b (←b) b› b› ... › b› b› b} 

     (with b pairs of angle brackets in subscript). 

 

In general, when each [Ai] is a normal separator, 

 {a, b [1 [2 \1 [A1] 1 [A2] ... 1 [Ak] 2 2] 2] 2} 

    = {a ‹0 [2 \1 [A1] 1 [A2] ... 1 [Ak] 2 2] 2› b} 

    = {a ‹b ‹b ‹ ... ‹b ‹b \1 [A1] 1 [A2] ... 1 [Ak-1] 1 ‹Ak’› b (←b) b› b› ... › b› b› b} 

     (with b pairs of angle brackets and k 1’s), 

where Ak’ is identical to Ak except that the first entry is reduced by 1. 

 

Taking the arbitrary string S = ‘1 [B1] 1 [B2] ... 1 [Bm] 2’, where m ≥ 1 and each [Bi] is a normal 

separator, the recursive definition of an (n1 [A1] n2 [A2] ... nk [Ak] nk+1)-hyperseparator (for k ≥ 0, n1 ≥ 1, 

ni ≥ 1 (1 ≤ i ≤ k), nk+1 ≥ 2 (k ≥ 1) and normal separators [Ai]) is that one of the following four conditions 

hold: 

1. It is the \n1 [A1] n2 [A2] ... nk [Ak] nk+1 symbol. 

2. Contains at least one (n1+1 [A1] n2 [A2] n3 [A3] ... nk [Ak] nk+1)-hyperseparator in its ‘base layer’. 

3. Subscripted by n1 [A1] n2 [A2] ... ni-1 [Ai-1] ni and contains at least one 

(1 [A1] 1 [A2] ... 1 [Ai] ni+1+1 [Ai+1] ni+2 [Ai+2] ... nk [Ak] nk+1)-hyperseparator or 

(1 [A1] 1 [A2] ... 1 [Ai-1] S [Ai] ni+1 [Ai+1] ni+2 [Ai+2] ... nk [Ak] nk+1)-hyperseparator in its ‘base layer’, 

with [B1] < [Ai], for some 1 ≤ i ≤ k. (When i = k, the hyperseparator expressions would read 

(1 [A1] 1 [A2] ... 1 [Ak] nk+1+1)-hyperseparator or (1 [A1] 1 [A2] ... 1 [Ak-1] S [Ak] nk+1)- 

hyperseparator.) 

4. Subscripted by n1 [A1] n2 [A2] ... nk [Ak] nk+1 and contains at least one 

(1 [A1] 1 [A2] ... 1 [Ak] S)-hyperseparator in its ‘base layer’. 

 

The highest order hyperseparators in an array are backslash symbols, so these are determined first, 

followed by the next highest hyperseparators, and so on, down to the 1-hyperseparators. A normal 

separator is a separator that cannot be defined using the above recursive definition – it is neither 

subscripted nor a backslash symbol, and it contains no 2- or higher order hyperseparators in its ‘base 

layer’. 

 

In Rule A5, subrules b*, c, d and e now become subrules c, d, e and f respectively. The backslash in 

Rule A5b is now the generalised subscript array \M symbol, where M contains at least one entry of 2 

or greater. The modified and complete Angle Bracket Rules are as follows:- 

 

Rule A1 (only 1 entry of either 0 or 1): 

 ‘a ‹0›N b’ = ‘a’, 

 ‘a ‹1›N b’ = ‘a, a, ... , a’  (with b a’s), 

 ‘a ‹0›N b (←c)’ = ‘c’, 

 ‘a ‹1›N b (←c)’ = ‘a, a, ... , a, c’ (with b-1 a’s). 
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Rule A2 (only 1 entry of either 0 or 1 prior to 2-hyperseparator or higher order hyperseparator): 

 ‘a ‹0 #›N b’ = ‘a’, 

 ‘a ‹1 #›N b’ = ‘a [1 #]N a [1 #]N ... [1 #]N a’  (with b a’s), 

 ‘a ‹0 #›N b (←c)’ = ‘c’, 

 ‘a ‹1 #›N b (←c)’ = ‘a [1 #]N a [1 #]N ... a [1 #]N c’ (with b-1 a’s), 

where # begins with a 2- or higher order hyperseparator. 

 

Rule A3 (last entry in any 1-space or higher dimensional space of array is 1): 

 ‘a ‹# [A] 1›N b’ = ‘a ‹#›N b’. 

When [A] is an M1-hyperseparator, [B] is an M2-hyperseparator and M1 < M2, or M1 = M2 and level of 

[A] is less than level of [B], 

 ‘a ‹# [A] 1 [B] #*›N b’ = ‘a ‹# [B] #*›N b’. 

Remove trailing 1’s. 

 

Rule A4 (number to right of angle brackets is 1): 

 ‘a ‹A›N 1’ = ‘a’. 

 

Rule A5 (Rules A1-4 do not apply, first entry is 0, separator immediately prior to next non-1 entry (c1,1) 

is [A1,1(p1,1)]): 

 ‘a ‹ 0 [A1,1(1)] 1 [A1,1(2)] ... 1 [A1,1(p1,1-1)] 1 [A1,1(p1,1)] c1,1 #1,1 #* ›N b’ = ‘a ‹S1,1 #*›N b’, 

where p1,1 ≥ 1, each of [A1,1(i*)] is either normal separator or 1-hyperseparator, and #* is either an 

empty string or begins with a 2- or higher order hyperseparator. 

Set i = 1 and j = 1, and follow Rules A5a-f (a, b, c and f are terminal, d and e are not). 

 

Rule A5a (separator [Ai,1(pi,1)] = [1 \2 2] = \): 

 Si,1 = ‘Rb’, 

 Rn = ‘b ‹Ai,1(1)’› b [Ai,1(1)] b ‹Ai,1(2)’› b [Ai,1(2)] ... b ‹Ai,1(pi,1-1)’› b [Ai,1(pi,1-1)] 

          b ‹Rn-1› b  \  ci,1-1 #i,1’, 

 R1 = ‘0’. 

 

Rule A5b (Rule A5a does not apply, separator [Ai,j(pi,j)] = \M, where j ≥ 2 and M ≠ ‘1’): 

 Si,j = ‘Rb,j-1’, 

 Rn,j-1 = ‘b ‹Ai,j(1)’› b [Ai,j(1)] b ‹Ai,j(2)’› b [Ai,j(2)] ... b ‹Ai,j(pi,j-1)’› b [Ai,j(pi,j-1)] 

             b ‹Ai,1(1)’› b [Ai,1(1)] b ‹Ai,1(2)’› b [Ai,1(2)] ... b ‹Ai,1(pi,1-1)’› b [Ai,1(pi,1-1)] 

             b ‹Rn-1,1› b [Ai,1(pi,1)] ci,1-1 #i,1  \M  ci,j-1 #i,j’, 

 Rn,k = ‘b ‹Ai,k+1(1)’› b [Ai,k+1(1)] b ‹Ai,k+1(2)’› b [Ai,k+1(2)] ... 

           b ‹Ai,k+1(pi,k+1-1)’› b [Ai,k+1(pi,k+1-1)] b ‹Rn,k+1› b [Ai,k+1(pi,k+1)] ci,k+1-1 #i,k+1’ (1 ≤ k < j-1), 

 R1,1 = ‘0’. 

 

Rule A5c (Rules A5a-b do not apply, separator [Ai,j(pi,j)] = [d #1]M, where d ≥ 2 and #1 contains at least 

one H-hyperseparator in its base layer, where H begins with 1 and H ≠ ‘1’; in other words, 

 H = ‘1 [H1] 1 [H2] ... 1 [Hk] h #2’, 

where h ≥ 2, k ≥ 1 and each of [Hi] is a normal separator): 

 Si,j = ‘b ‹Ai,j(1)’› b [Ai,j(1)] b ‹Ai,j(2)’› b [Ai,j(2)] ... b ‹Ai,j(pi,j-1)’› b [Ai,j(pi,j-1)] Rb [d #1]M ci,j-1 #i,j’, 

 Rn = ‘b ‹Rn-1› b’, 

 R1 = ‘b  [d-1 #1]1 [H1] 1 [H2] ... 1 [Hk-1] 1 ‹Hk’› b (←m+b-1)  b’, 

where m (which may be 1) is the kth and final entry in the subscript array M when written as 

 M = ‘m1 [H1] m2 [H2] ... mk-1 [Hk-1] m’. 
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Rule A5d (Rules A5a-c do not apply, separator 

 [Ai,j(pi,j)] = [1 [Ai,j+1(1)] 1 [Ai,j+1(2)] ... 1 [Ai,j+1(pi,j+1)] 

                  1 [Ai+1,1(1)] 1 [Ai+1,1(2)] ... 1 [Ai+1,1(pi+1,1)] ci+1,1 #i+1,1], 

where pi,j+1 ≥ 1, pi+1,1 ≥ 1, ci+1,1 ≥ 2, each of [Ai+1,1(i*)] is either a normal separator or 1-hyperseparator, 

and each of [Ai,j+1(i*)] is a 2- or higher order hyperseparator): 

 Si,j = ‘b ‹Ai,j(1)’› b [Ai,j(1)] b ‹Ai,j(2)’› b [Ai,j(2)] ... b ‹Ai,j(pi,j-1)’› b [Ai,j(pi,j-1)] 

          b ‹Ti› b [Ai,j(pi,j)] ci,j-1 #i,j’, 

 Ti = ‘b ‹Ai,j+1(1)’› b [Ai,j+1(1)] b ‹Ai,j+1(2)’› b [Ai,j+1(2)] ... b ‹Ai,j+1(pi,j+1)’› b [Ai,j+1(pi,j+1)] Si+1,1’. 

Increment i by 1, reset j = 1, and repeat Rules A5a-f. 

 

Rule A5e (Rules A5a-d do not apply, separator 

 [Ai,j(pi,j)] = [1 [Ai,j+1(1)] 1 [Ai,j+1(2)] ... 1 [Ai,j+1(pi,j+1)] ci,j+1 #i,j+1], 

where pi,j+1 ≥ 1, ci,j+1 ≥ 2 and each of [Ai,j+1(i*)] is a 2- or higher order hyperseparator): 

 Si,j = ‘b ‹Ai,j(1)’› b [Ai,j(1)] b ‹Ai,j(2)’› b [Ai,j(2)] ... b ‹Ai,j(pi,j-1)’› b [Ai,j(pi,j-1)] 

          b ‹Si,j+1› b [Ai,j(pi,j)] ci,j-1 #i,j’. 

Increment j by 1 and repeat Rules A5a-f. 

 

Rule A5f (Rules A5a-e do not apply): 

 Si,j = ‘b ‹Ai,j(1)’› b [Ai,j(1)] b ‹Ai,j(2)’› b [Ai,j(2)] ... b ‹Ai,j(pi,j)’› b [Ai,j(pi,j)] ci,j-1 #i,j’. 

 

Rule A6 (Rules A1-5 do not apply): 

 ‘a ‹n #›N b’ = ‘a ‹n-1 #›N b [n #]N a ‹n-1 #›N b [n #]N ... [n #]N a ‹n-1 #›N b’ 

      (with b ‘a ‹n-1 #›N b’ strings). 

 

Notes: 

1. A, B, Ai,j(1), Ai,j(2), ... , Ai,j(pi,j), Hi are strings of characters within separators. 

2. Ai,j(1)’, Ai,j(2)’, ... , Ai,j(pi,j)’, Hk’ are strings of characters within angle brackets that are identical to 

the strings Ai,j(1), Ai,j(2), ... , Ai,j(pi,j), Hk respectively except that the first entries of each have been 

reduced by 1. If Ai,j(i*) (for some 1 ≤ i* ≤ pi,j) begins with 1, Ai,j(i*)’ begins with 0. 

3. M and N are strings of characters that make up subscript arrays. 

4. Si,j, Ti, Rn and Rn,k are string building functions which create strings of characters. The R functions 

involve nesting the same string of characters around itself n-1 times before being replaced by the 

string ‘0’. 

5. #, #*, #i,j, #1 and #2 are strings of characters representing the remainder of the array (can be null 

or empty). 

6. A \N symbol is an N-hyperseparator. A recursive definition of hyperseparators is given on page 25. 

A separator that contains no 2- or higher order hyperseparators in its ‘base layer’ is a normal 

separator (or 0-hyperseparator). 

7. The comma is used as shorthand for the [1] separator. 

8. Any 2- or higher hyperseparator may carry a subscript. For example, in Rule A5b, each of the 

[Ai,j(i*)] separators, for 1 ≤ i* < pi,j, is (like [Ai,j(pi,j)] = \M) an M-hyperseparator (where M is at least 

‘2’ as Rule A5a does not apply), and may either carry the subscript M(i*) (either the whole of M or 

the left part of M up to a certain entry) or no subscript at all. If [Ai,j(i*)], for some 1 ≤ i* < pi,j, has the 

subscript M(i*), it is written [Ai,j(i*)]M(i*), and the associated angle bracket array that replaces the 

preceding 1 would be ‘b ‹Ai,j(i*)’›M(i*) b’. 

9. The [1 \M 2]N separator (M ≠ ‘1’) reduces to a \X symbol, for a subscript array X, according to a 

special rule (see below). 
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Whenever we encounter a separator of the form [1 \X 2]Y (with a backslash symbol between the only 

two entries of 1 and 2), where X and Y are subscript arrays and X ≠ ‘1’, this separator ‘drops down’ to 

a simple backslash symbol of the form \Z, where Z is another subscript array. This special rule is 

known as the Dropping Down Rule. 

 

Dropping Down Rule (separator is of the form [1 \M 2]N with M ≠ ‘1’, i.e. has only two entries of 1 and 2 

to left and right respectively of backslash subscript array, which is a 2- or higher order 

hyperseparator): 

 [1  \1 [A1] 1 [A2] ... 1 [Am] nm+1 #  2]n1 [A1] n2 [A2] ... nk-1 [Ak-1] nk 

    = \n1 [A1] n2 [A2] ... nk [Ak] 1 [Ak+1] 1 [Ak+2] ... 1 [Am] nm+1-1 #, 

where 0 ≤ k ≤ m, nm+1 ≥ 2, each of [Ai] is a normal separator and # represents the remainder of the 

backslash subscript array. 

 

When k = m, the Dropping Down Rule becomes: 

 [1  \1 [A1] 1 [A2] ... 1 [Am] nm+1 #  2]n1 [A1] n2 [A2] ... nm-1 [Am-1] nm 

    = \n1 [A1] n2 [A2] ... nm [Am] nm+1-1 #. 

 

When k = 0, the Dropping Down Rule becomes: 

 [1  \1 [A1] 1 [A2] ... 1 [Am] nm+1 #  2] 

    = \1 [A1] 1 [A2] ... 1 [Am] nm+1-1 #. 

 

When k = m = 0, the Dropping Down Rule becomes: 

 [1 \n1 # 2] = \n1-1 #. 

 

Trailing 1’s in subscript arrays are removed as with separator arrays and angle bracket arrays. For 

example, 

 \# [A] 1 = \#  and  [X]# [A] 1 = [X]#. 

When [A] < [B], 

 \# [A] 1 [B] #* = \# [B] #*  and  [X]# [A] 1 [B] #* = [X]# [B] #*. 

 

This is my complete Nested Subscript Array Notation. The limit ordinal of this notation is θ(φ(Ω, 1)) or 

θ(θ1(Ω)). 

 

In Rule A5b, the pathway from Rn,1 to Rn-1,1 is split up into many parts, via layers of separators. Rn,1 

represents the first layer of 2-hyperseparators or (1 [B1] 1 [B2] ... 1 [Bq] 2)-hyperseparators (for normal 

separators [Bi]); Rn,2 comprises the second layer of separators, which could be the set of 

3-hyperseparators, (1, 2)-hyperseparators, (2, 2)-hyperseparators, (1, 3)-hyperseparators, or 

(n1 [B1] n2 [B2] ... nq [Bq] nq+1)-hyperseparators, where n1+n2+...+nq+1-q is either 2 or 3 (but not 

2-hyperseparators); Rn,3 contains the third layer of (n1 [B1] n2 [B2] ... nq [Bq] nq+1)-hyperseparators, 

where n1+n2+...+nq+1-q is either 2, 3 or 4 (but not 2- or 3-hyperseparators). In general, Rn,k is the string 

of (n1 [B1] n2 [B2] ... nq [Bq] nq+1)-hyperseparators, where n1+n2+...+nq+1-q can be any integer from 2 to 

k+1 (but not k-hyperseparators or below). The final layer of M-hyperseparators and 1-hyperseparators 

is represented by Rn,j-1, which sandwiches the 1-hyperseparators in between the penultimate 

M-hyperseparator and the \M symbol. In each case where the array level of the set of hyperseparators 

begins with 1, this is through a separator which may possess a subscript – for example, the set of 

(1 [B1] 1 [B2] ... 1 [Bq] nq+1 #)-hyperseparators (for some q ≥ 1 and nq+1 ≥ 2) is immediately via a 

separator with an n1 [B1] n2 [B2] ... nr-1 [Br-1] nr subscript (for some 0 ≤ r ≤ q, where r = 0 represents no 

subscript). 
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Rule A5c with the lowest H-hyperseparator within #1, 

 [Ai,j(pi,j)] = [2 \1 [H1] 1 [H2] ... 1 [Hk] h #2 2]M 

would mean that 

 R1 = ‘b  [1 \1 [H1] 1 [H2] ... 1 [Hk] h #2 2]1 [H1] 1 [H2] ... 1 [Hk-1] 1 ‹Hk’› b (←m+b-1)  b’ 

      = ‘b  \1 [H1] 1 [H2] ... 1 [Hk-1] 1 ‹Hk’› b (←m+b-1) [Hk] h-1 #2  b’  (Dropping Down Rule). 

By setting m = 1, we obtain 

 R1 = ‘b  \1 [H1] 1 [H2] ... 1 [Hk-1] 1 ‹Hk’› b (←b) [Hk] h-1 #2  b’, 

which is how the (k+1)th entry of the backslash subscript array is reduced by 1. (The kth entry is 

completely filled up with 1’s in the space corresponding to the separator [Hk], with b 1’s in each ‘row’, 

b ‘rows’ in each ‘plane’, etc., and the very last of these 1’s is replaced by b; all other entries remain 

unchanged.) 

 

Can anyone beat this function? It is defined as follows: 

 S(n) = {3, n  [1 [2 \Rn 2] 2]  2}, 

where Ri = ‘1 [1 [2 \Ri-1 2] 2] 2’, 

 R1 = ‘1, 2’. 

 

While S(1) = 3, the number 

 S(2) = {3, 2  [1 [2 \1 [1 [2 \1,2 2] 2] 2 2] 2]  2} 

         = {3 ‹0 [2 \1 [1 [2 \1,2 2] 2] 2 2] 2› 2} 

         = {3 ‹2 ‹2 \A 2› 2› 2}, 

where A = ‘1 ‹0 [2 \1,2 2] 2› 2 (←2)’ 

    = ‘1 ‹2 ‹2 \2 2› 2› 2 (←2)’ 

    = ‘1 ‹2 \ 2 [2 \2 2] 2 \ 2› 2 (←2)’ 

    = ‘1 [2\2 [2 \2 2] 2\2] 1 [1\2 [2 \2 2] 2\2] 1 [2 [2 \2 2] 2\2] 1 [1 [2 \2 2] 2\2] 

        1 [2\2 [2 \2 2] 1\2] 1 [1\2 [2 \2 2] 1\2] 1 [2 [2 \2 2] 1\2] 1 [1 [2 \2 2] 1\2] 

        1 [2\2 [2 \2 2] 2] 1 [1\2 [2 \2 2] 2] 1 [2 [2 \2 2] 2] 1 [1 [2 \2 2] 2] 1 [2\2] 1 [1\2] 1 [2] 1,2’, 

which means that 

 S(2) = {3 ‹2 [1 \A 2] 2 [2 \A 2] 2 [1 \A 2] 2› 2} 

         = {3 ‹2 \ 2 [2 \A 2] 2 \ 2› 2}   ([1 \A 2] = \ as A has single non-1 entry of 2) 

         = {B [1\2 [2 \A 2] 2\2] B [2\2 [2 \A 2] 2\2] B [1\2 [2 \A 2] 2\2] B}, 

where B = ‘3 ‹0 \ 2 [2 \A 2] 2 \ 2› 2’ 

    = ‘3 ‹2 [2 \A 2] 2 \ 2› 2’ 

    = ‘C [1 [2 \A 2] 2\2] C [2 [2 \A 2] 2\2] C [1 [2 \A 2] 2\2] C’, 

where C = ‘3 ‹0 [2 \A 2] 2 \ 2› 2’ 

    = ‘3 ‹2 ‹2 \A* 2› 2 [2 \A 2] 1 \ 2› 2’, 

where A* is identical to A except that the final ‘1,2’ is replaced by ‘1 ‹0› 2 (←2)’ = ‘2’ (Rule A5c), 

which means that 

 C = ‘3 ‹2 [1 \A* 2] 2 [2 \A* 2] 2 [1 \A* 2] 2 [2 \A 2] 1 \ 2› 2’ 

    = ‘3 ‹2 \ 2 [2 \A* 2] 2 \ 2 [2 \A 2] 1 \ 2› 2’  ([1 \A* 2] = \ as A* has single non-1 entry). 

It would be rather tedious to go any further – we would eventually encounter a string where there are 

65,536 [2 \Ai 2] separators in 

 ‘3 ‹2 \ 2 [2 \2 2] 2 \ 2 [2 \1,2 2] 1 \ 2 [2 \1 [2] 2 2] 1 \ 2 ... [2 \A* 2] 1 \ 2 [2 \A 2] 1 \ 2› 2’, 

where each Ai+1 is identical to Ai (starting with A1 = A and A2 = A*) except that the ‘1 [Xi+1] 2’ at the end 

of Ai+1 (taking [Xi+1] as its final separator) is replaced by ‘1 ‹Xi+1’› 2 (←2)’ (Rule A5c), before the last Ai 

contains a single entry. 

 

The third value of the S function, 

 S(3) = {3, 3  [1 [2 \1 [1 [2 \A 2] 2] 2 2] 2]  2}  (with A = ‘1 [1 [2 \1,2 2] 2] 2’) 
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         = {3 ‹0 [2 \1 [1 [2 \A 2] 2] 2 2] 2› 3} 

         = {3 ‹3 ‹3 ‹3 \B 3› 3› 3› 3}, 

where B = ‘1 ‹0 [2 \A 2] 2› 3 (←3)’ 

    = ‘1 ‹0 [2 \1 [1 [2 \1,2 2] 2] 2 2] 2› 3 (←3)’ 

    = ‘1 ‹3 ‹3 ‹3 \1 ‹0 [2 \1,2 2] 2› 3 (←3) 3› 3› 3› 3 (←3)’ 

    = ‘1 ‹3 ‹3 ‹3 \1 ‹3 ‹3 ‹3 \3 3› 3› 3› 3 (←3) 3› 3› 3› 3 (←3)’. 

 

In general, 

 S(n) = {3 ‹n ‹n ‹ ... ‹n ‹n \Rn n› n› ... › n› n› n}  (with n pairs of angle brackets), 

where Ri = ‘1 ‹n ‹n ‹ ... ‹n ‹n \Ri-1 n› n› ... › n› n› n (←n)’  (with n pairs of angle brackets), 

 R1 = ‘n’. 

 

Imagine how huge this number must be: 

 S(S(S(...S(3)...))) (with S(3) S’s). 

It surely must be scraping infinity! 
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